期刊文献+

大型地下厂房围岩参数反演及位移监测分析 被引量:2

Inversion Analysis of Surrounding Rock Parameters and Displacement Monitoring in Large Underground Powerhouse
在线阅读 下载PDF
导出
摘要 基于卸荷岩体力学分析方法建立了考虑岩体强、弱卸荷区地下洞室二维ADINA有限元模型,建立了BP神经网络模型,采用搜索算法确定了训练误差最小网络训练参数,将训练好的网络保存并用于仿真,利用工程监测的位移资料反演了岩体主要参数,参考卸荷岩体力学参数折减方法确定了卸荷区岩体参数,并将反演的参数代入有限元模型计算,计算位移值与监测位移值的对比结果表明,二者吻合较好,反演的参数可靠性较大。 Based on the unloading rock mass mechanics analysis, two dimensional ADINA finite element method of underground chamber is built with considering strong and weak excavation disturbed zone. BP neural network model is established. Its parameters are determined by the search algorithm which leads to the minimal training error. The trained model is saved for simulation. Project displacement monitoring data is used to inverse the main rock mass parameters by the BP neural network. The parameters of rock mass in the excavation disturbed zone are determined by the analysis method of unloading rock mass mechanics. Inversion parameters are put into the finite element model. Compared with the computed displacement and monitored value, it finds that the value of computed displacement is close to the monitored value. Inversion parameters have high reliability.
出处 《水电能源科学》 北大核心 2010年第3期98-100,114,共4页 Water Resources and Power
关键词 地下洞室 参数反演 BP神经网络 岩体卸荷 位移 underground chamber inversion parameter BP neural network unloading rock mass displacement
  • 相关文献

参考文献7

二级参考文献27

共引文献125

同被引文献14

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部