期刊文献+

基于邻域相似性的三角网格光顺算法 被引量:2

Triangular Mesh Smoothing Algorithm Based on Neighborhood Similarity
在线阅读 下载PDF
导出
摘要 为了提高三角网格模型的质量,满足模型后续处理的要求,提出了一种基于邻域相似性的网格光顺算法。类比图像像素的灰度值,首先构造顶点的双边滤波微分算子,作为其几何灰度值;然后计算顶点邻域之间的相似性,作为顶点几何灰度值的权值,并对顶点的邻域顶点的几何灰度值进行加权平均,得到该顶点的最终几何灰度值;最后将顶点沿着其法矢量方向移动几何灰度值大小的距离,得到光顺后的三角网格模型。实验证明,该算法在光顺模型的同时有效地保持了网格的几何特征。 In order to enhance the quality of triangular mesh model and meet the requiremented of follow-up treatment, this paper presented a mesh smoothing algorithm based on neighborhood similarity. Firstly, contrasting to the gray values of image pixels, bilateral filtering differential operator was constructed as geometric gray value of the vertex. Then neighborhood similarity was calculated between vertexes and the result was used as weight of geometric gray value for each vertex. The final geometric gray value of a vertex was the average weight of its neighbor vertexes' geometric gray values. Finally, the vertex moved geometric gray value size of distance along its normal direction, and then we would get the smoothed model. Experiments demonstrate that this algorithm can acquire smoothing models and maintains their geometrical features effectively at the same time.
出处 《计算机科学》 CSCD 北大核心 2010年第3期289-291,共3页 Computer Science
基金 国家863高技术研究发展计划(2007AA04Z137)资助
关键词 三角网格 几何灰度值 双边滤波 几何特征 Triangular mesh, Geometric gray value, Bilateral filter, Geometric feature
  • 相关文献

参考文献16

  • 1Taubin G. A signal processing approach to fair surface design [C]//Proc. SIGGRAPH. 1995 : 351-358.
  • 2Vollmer G, Mencl R, Muller H. Improved Laplacian smoothing of noisy surface meshes [J]. Computer Graphies Forum, 1999, 18(3) : 131-138.
  • 3Bajaj C,Xu G. Anisotropic diffusion on surface and function on Surfaces [J]. ACM Trans on Graphics, 2003,22 : 4-32.
  • 4Claretz U, Diewald U, Rumpf M. Anisotropic geometric diffusion in surface processing[C]//Proc. IEEE Visualization. 2000:397- 405.
  • 5Desbrun M, Meyer M, Schroder P, et al. Implicit fairing of irregular meshes using diffusion and curvature flow[C]//Proc. SIGGRAPH. 1999:317-324.
  • 6Desbrun M, Meyer M, Schroder P, et al. Anisotropic feature preserving denoising of height field and bivariate data[C] // Proc. Graphics Interface. 2000;145-152.
  • 7Fleishman S, Drori I, Cohen-or D. Bilateral meshes denoising [A]//Proceeding of SIGGRAPH[C]. San Diego: ACM, 2003 : 950-953.
  • 8Jones T R, Durand F, Desbrun M. A Non-iterative Feature-preserving Mesh Smoothing [C]//Proc. of SIGGRAPH03. San Diego, 2003 : 943-949.
  • 9周昆,鲍虎军,石教英.统一的数字几何处理框架[J].计算机学报,2002,25(9):905-909. 被引量:17
  • 10刘胜兰,周儒荣,聂军洪,周来水.主曲率均匀的网格光顺[J].计算机学报,2004,27(1):79-84. 被引量:23

二级参考文献39

  • 1[1]Kobbelt L, Taubin G. Geometric signal processing on large polyhedral meshes. In: SIGGRAPH'2001 Course Notes, Course 17, Los Angeles, California, 2001
  • 2[2]Sweldens W, Schroder P. Digital geometric signal processing.In:SIGGRAPH'2001 Course Notes, Course 50, Los Angeles, California, 2001
  • 3[3]Wei L Y, Levoy M. Texture synthesis over arbitrary manifold surfaces. In: Proc SIGGRAPH'2001, Los Angeles, California, 2001.355-360
  • 4[4]Pauly M, Gross M. Spectral processing of point-sampled geometry. In: Proc SIGGRAPH'2001, Los Angeles, California, 2001. 379-386
  • 5[5]Schroder P, Sweldens W. Spherical wavelets: Efficiently representing functions on the sphere. In:Proc SIGGRAPH'95, Los Angeles, California, 1995.161-172
  • 6[6]Taubin G. A signal processing approach to fair surface design. In:Proc SIGGRAPH'95, Los Angeles, California, 1995. 351-358
  • 7[7]Karni Z, Gotsman C. Spectral compression of mesh geometry. In:Proc SIGGRAPH'2000, New Orleans, Louisana, 2000. 279-286
  • 8[8]Kobbelt L, Campagna S, Vosatz J et al. Interactive multiresolution modeling on arbitrary meshes. In: Proc SIGGRAPH'98, Orlando, Florida, 1998. 105-114
  • 9[9]Guskov I, Sweldens W, Schroder P. Multiresolution signal processing for meshes. In: Proc SIGGRAPH'99, Los Angeles, California,1999. 325-334
  • 10[10]Lounsbery M, DeRose T, Warren J. Multiresolution analysis for surfaces of arbitrary topological types. ACM Trans Graphics, 1997, 16(1):34-73

共引文献52

同被引文献15

  • 1丁永祥,夏巨谌,王英,肖景容.任意多边形的Delaunay三角剖分[J].计算机学报,1994,17(4):270-275. 被引量:83
  • 2Zhengjie Deng, Fengwei Wang, Guoyuan Chen, Chun Shi, Shuqian He, Shulei Wu. A Mesh Deformation Method with Multiple Edit-ing Granularities[J].Applied Mechanics and Materials,2013, 263-266(Part 3):1822-1829.
  • 3Zhengjie Deng, Xiaonan Luo, Xiaoping Miao. Automatic Cage Building with Quadric Error MetricsfJ]Journal of Computer Scienceand Technology,2011,26(3):538-547.
  • 4Gabriel Taubin. A signal processing approach to fair surface design[C].Proceedings of the 22nd annual conference on Computer graph-ics and interactive techniques:ACM, 1995:351-358.
  • 5Mathieu Desbrun, Mark Meyer, Peter Schroder, Alan H. Barr. Implicit fairing of irregular meshes using diffusion and curvature flow[C].Proceedings of the 26th annual conference on Computer graphics and interactive techniques: ACM Press/Addison-Wesley Publish-ing Co., 1999:317—324.
  • 6Mathieu Desbrun, Mark Meyer, Peter Schroder, Alan H. Barr. Anisotropic feature-preserving denoising of height fields and bivariatedata[C].Proceeding in Graphics Interface,Montreal, Quebec,2000:145—152.
  • 7Thouis R.Jones, Fredo Durand, Mathieu Desbrun. Non-iterative, feature-preserving mesh smoothing[C].ACM SIGGRAPH 2003 Pa-pers, San Diego, California:ACM,2003:943-949.
  • 8Shachar Fleishman, Iddo Drori, Daniel Cohen-Or. Bilateral mesh denoising[C].ACM SIGGRAPH 2003 Papers, San Diego,California:ACM,2003:950-953.
  • 9Zhuo Su, Xiaonan Luo, Zhengjie Deng, Yun Liang, Zhen Ji. Edge-preserving Texture Suppression Filter Based on Joint FilteringSchemes[J].Multimedia,IEEE Transactions on,2013,15(3):535-548.
  • 10雷小群,李芳芳,肖本林.一种基于改进SIFT算法的遥感影像配准方法[J].测绘科学,2010,35(3):143-145. 被引量:9

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部