期刊文献+

基于阈值判决的无线传感器网络混沌信号重构 被引量:6

Reconstruction of Chaotic Signals in Wireless Sensor Networks Based on Threshold-Decision
在线阅读 下载PDF
导出
摘要 考虑在传感器网络中重构混沌信号的问题.各传感器同时观测一个混沌信号.由于带宽受限,各传感器量化观测信号并将量化后的数据发送到融合中心,该中心使用无先导卡尔曼滤波算法重构观测的混沌信号.为了节省能量,只有观测信号信噪比高于某个阈值的传感器被选中并发送数据.定义代价函数关联重构性能和能量消耗,分析并仿真了代价函数和阈值之间的关系.结果表明在某些情况下部分传感器发送数据更合理. The problem of reconstructing chaotic signals in wireless sensor networks is considered.All sensors observe a common chaotic signal.Because of the limited bandwidth,the observations are quantized and the quantized data are sent to a fusion center.The fusion center reconstructs the chaotic signals by using the unscented Kalman filtering(UKF) algorithm.To save energy,only the sensors for which the SNR of the observation is higher than a threshold are chosen for transmission.A cost function is defined to relate the reconstruction performance and the energy consumption.The relationship between the cost function and the threshold is analyzed and simulated.The results show that under certain conditions,it is more reasonable that only a portion of the sensors transmit data.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第1期124-128,共5页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(60872123) 国家自然科学基金-广东省自然科学基金联合基金资助项目(U0835001) 桂林电子科技大学科学研究基金资助项目(UF09017Y)
关键词 混沌信号 无线传感器网络 分布式估计 能效 chaotic signal wireless sensor network distributed estimation energy efficiency
  • 相关文献

参考文献20

  • 1Akyildiz I F, Su W, Sankarasubramaniam Y, et al. A Survey on Sensor Networks [J]. IEEE Communications Maga zine, 2002, 40(8) : 102 -- 114.
  • 2Luo Z. Universal Decentralized Estimation in a Bandwidth Constrained Sensor Network[J].IEEE Transactions on Information Theory, 2005, 51(6):2210--2219.
  • 3Luo Z. An Isotropic Universal Decentralized Estimation Scheme for a Bandwidth Constrained Ad Floe Sensor Network [J].IEEE Journal on Selected Areas in Communications, 2005, 23(4): 735--744.
  • 4Xiao J, Luo Z. Decentralized Estimation in an Inhomogeneous Sensing Environment [J]. IEEE Transactions on Information Theory, 2005, 51(10):3564--3575.
  • 5Xiao J, Cui S, I.uo Z, et al. Linear Coherent Decentralized Estimation[J].IEEE Transactions on Signal Processing, 2008, 56(2) : 757 -- 770.
  • 6Ribeiro A, Giannakis G B. Bandwidth Constrained Distributed Estimation for Wireless Sensor Networks Part I: Gaussian Case [J]. IEEE Transactions on Signal Processing, 2006, 54(3) : 1131 -- 1143.
  • 7Ribeiro A, Giannakis G B. Bandwidth Constrained Distributed Estimation for Wireless Sensor Networks Part II: Un known Probability Density Function [J].IEEE Transactions on Signal Processing, 2006, 51(7): 2784-2796.
  • 8Ribeiro A, Giannakis G B, Roumeliotis S I. SOI-KF: Distributed Kalman Filtering with Low-Cost Communications Using the Sign of Innovations [J]. IEEE Transactions on Signal Processing, 2006, 54(12) : 4782 - 4795.
  • 9Msechu E J, Roumeliotis S I, Ribeiro A, et al. Decentralized Quantized Kalman Filtering with Scalable Communication Cost [J].IEEE Transactions on Signal Processing, 2008, 56(8): 3723 --3741.
  • 10Schizas I D, Giannakis G B, Luo Z. Distributed Estimation Using Reduced-Dimensionality Sensor Observations [J].IEEE Transactions on Signal Processing, 2007, 55(8): 4284- 4299.

二级参考文献9

  • 1Feng J C, Tse C K. On-Line Adaptive Chaotic Demodulator Based on Radial-Basis-Function Neural Networks [J]. Phys Rev E, 2001,63: 1-10.
  • 2Cuomo K M, Oppenheim A V, Barron R J. Channel Equalization for Self-Synchronizing Chaotic Systems [J]. Proc IEEE ICASSP,1996, 3: 1605 - 1608.
  • 3Sharma N, Ott E. Combating Channel Distortions in Communication with Chaotic Systems [J]. Phys Lett A, 1998, 248:347 - 352.
  • 4Haykin S. Adaptive Filter Theory [M]. Fourth Edition. New Jersey: Prentice Hall, 2001.
  • 5Julier S J, Uhlmann J K, Whyte H D. A New Approach for Filtering Nonlinear Systems [J]. Proc Of the American Control Conference,1995, 1628 - 1632.
  • 6Iltis R A, Fuxjaeger A W. A Digital DS Spread-Spectrum Receiver with Joint Channel and Dopple Shift Estimation [J]. IEEE Transactions on Communication, 1991, 39:1255 - 1267.
  • 7Feng J C, Tse C K, Lau F C M. A Neural-Network-Based Channel-Equalization Strategy for Chaos-Based Communication Systems [J].IEEE Trans ( Circuits and Systems-part Ⅰ ), 2003, 50: 954 - 957.
  • 8Zhu Z, Leung H. Adaptive Blind Equalization for Chaotic Communication Systems Using Extended-Kalman Filter [J]. IEEE Trans( Circuits and Systems-part Ⅰ ), 2001, 48: 979 - 989.
  • 9禹思敏,丘水生,罗伟民.混沌通信的研究进展与综合评述[J].桂林电子工业学院学报,2000,20(1):56-62. 被引量:12

共引文献8

同被引文献43

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部