期刊文献+

基于Simple算法的方腔驱动流问题数值模拟 被引量:7

Numerical Simulation of the Driven Cavity Flow Based on Simple Method
在线阅读 下载PDF
导出
摘要 在计算流体力学的研究中,为了检验各种求解二维纳维司托克斯(NS)方程的数值方法的有效性,常常计算方腔驱动流问题。使用Simple算法求解NS方程,并用Fluent软件对标准计算流体力学测试算例——方腔驱动流问题进行了模拟分析,对不同雷诺数和网格大小下的计算结果进行了研究对比,计算结果与文献中的基准解符合良好。 In the study of computer fluid dynamics, we usually use Driven cavity flow to examine some methods of solving the Navier-Stokes (NS) equations. This report presents the solution to the Navier-Stokes equations. Standard fundamental methods like Simple and primary variable formulation has been used. The results are analyzed for standard CFD test case-driven cavity flow. Different reynold numbers and grid sizes have been studied. The results match very well with results from a benchmark paper.
作者 杨晶
出处 《电力学报》 2010年第1期88-90,共3页 Journal of Electric Power
关键词 SIMPLE算法 方腔驱动流 网格 雷诺数 simple algorithm driven cavity flow grid reynold number
  • 相关文献

参考文献6

二级参考文献30

  • 1李树民,朱国林,王开春.基于分区的隐式求解二维不可压NS方程的并行实现[J].空气动力学学报,2002,20(z1):39-44. 被引量:7
  • 2秦国良.谱元方法求解下不可压缩流动与自然对流换热问题[M].西安:西安交通大学,1999,10..
  • 3Lucy L B. A numerical approach to the testing of the fission hypothesis [J]. The Astron J, 1977, 8: 1013- 1024.
  • 4Liu W K, Jun S, Zhang Y F. Reproducing Kernel particle methods [J]. Int J Numer Methods Eng, 1995, 20:1081 -1106.
  • 5Nayroles B, Touzot G, Villon P. Generalizing the finite element method: Diffuse approximation and diffuse elements [J]. Comput Mech, 1992, 10.. 307-318.
  • 6Belytschko T, Gu L, Liu Y Y. Fracture and crack growth by element-free Galerkin methods [J]. Model Simul Master Sci Eng, 1994, 2: 519-534.
  • 7Su W D, Zhao H, Wu J Z.A diagnosis of linear eddy-viscosity in turbulence modeling[J].Physics of Fluids,2002,14(3):1284~1287.
  • 8Gao Ge, Yong Yan.Partial-average-based equations of incompressible turbulent flow[J].International Journal of Non-Linear Mechanics,2004,39:1407~1419.
  • 9帕坦卡SV 张政译.传热与流体流动的数值计算[M].北京:科学出版社,1984.70-77.
  • 10M F Paisley. Multigrid Solution of the Incompressible Navier-Stokes Equations for Density-Stratified Flow past Three-Dimensional Obstacles[J]. Journal of Computational Physics, 2001, 170(2):785-811.

共引文献27

同被引文献67

引证文献7

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部