期刊文献+

一类新单参数混沌系统的降维控制

Dimension Reduced Control for a New Single Parameter Chaotic System
在线阅读 下载PDF
导出
摘要 针对一类新单参数混沌系统,根据其特殊的系统结构给出了降维控制的策略.通过控制部分变量达到控制整个系统的目的,使得这类混沌系统的控制问题由三维降为两维,从而有效地降低了系统控制的复杂度.从反馈控制和自适应控制两个方面阐述了此降维控制策略的可行性,理论结果和数值仿真表明设计的降维控制方法可使系统稳定在任意的目标点或任意的周期轨道上. The control method of dimension reduced is investigated for a new single parameter chaotic system which has especial structure. The whole system can be controlled when some of the system variables are controlled. The control problem for this kind of chaotic system is reduced from 3 -dimensions to 2 - dimensions and the complexity is reduced. The feasibility is discussed by means of feedback control and adaptive control methods. The results of theory and numerical calculations indicate that the trajectories of a chaotic system can be controlled to approach arbitrary points or arbitrary target periodic orbits by the control method of dimension reduced.
出处 《东华大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第1期52-56,共5页 Journal of Donghua University(Natural Science)
基金 国家"八六三"高技术研究发展计划(2008AA042902) 教育部高校博士点基金项目(200802550007) 上海市教委科研创新重点项目(09zz66) 郧阳师专项目(2009B03)
关键词 混沌系统 反馈控制 自适应控制 降维控制 chaotic system feedback control adaptive control dimension reduced control
  • 相关文献

参考文献11

  • 1LORENZ E N. Deterministic Nonperiodic Flow [J]. Journal of Atmospheric Sciences, 1963,20(2) : 130 - 141.
  • 2PECORA L M, CARROLL T L. Synchronization in Chaotic Systems [ J ]. Physical Review Letters, 1990, 64 ( 6 ) : 821 - 824.
  • 3ELABBSSY E M, AGIZA H N, EL - DESSOKY M M. Adaptive Synchronization of a Hyperchaotic System with Uncertain Parameter [J]. Chaos, Solitons & Fractals, 2006, 30(,5): 1133- 1142.
  • 4WANG Y W, GUAN Z H, WANG H O. Feedback and Adaptive Control for the Synchronization of Chen System via a Single Variable [J ]. Physics Letter A, 2003, 312 (1): 34 -40.
  • 5LU J H, LU J A. Controlling Uncertain Lti System Using Linear Feedback [J]. Chaos Solitons and Fractals, 2003,17 (1): 127- 132.
  • 6HUANG L L, FENG R P, WANG M. Synchronization of Chaotic Systems via Nonlinear Control [J]. Physics Letter A, 2004,320(4): 271- 275.
  • 7LUO R Z. Impulsive Control and Synchronization of a New Chaotic System [ J]. Physics Letter A, 2008, 372 (5): 648 - 653.
  • 8史岩,齐晓慧.基于降维观测器的系统控制律重构研究[J].控制工程,2006,13(3):212-214. 被引量:5
  • 9钟戈,张庆灵.基于降维观测器的网络控制系统的容错控制[J].控制工程,2008,15(3):306-309. 被引量:6
  • 10陶朝海,陆君安,罗燕,杨春德.一类混沌系统的降维控制[J].系统工程与电子技术,2005,27(8):1459-1461. 被引量:2

二级参考文献18

  • 1樊卫华,蔡骅,陈庆伟,胡维礼.MIMO网络控制系统的容错控制[J].系统工程与电子技术,2005,27(5):879-882. 被引量:9
  • 2胡刚 萧井华 郑志刚.混沌控制[M].上海科技教育出版社,2000..
  • 3Hubler A. Adaptive control of chaotic system[J]. Helv. Phys. Acta , 1989,62:343.
  • 4Ott E, Grebogi C, Yorke J A. Controlling chaos[J]. Phys. Rev.Lett., 1990,64 : 1196.
  • 5Chen G R, Dong X. From chaos to order: Methodologies, perspectives and applications[ M ]. Singapore: World Scientific, 1998.
  • 6Lü J H,Chen G,Cheng D, et al. Bridge the gap between the Lorenz system and the Chen system[J]. Int. J. of Bifurcation and Chaos,2002,12(12) :2917 - 2926.
  • 7Lu J A,Tao C H. Parameter identification and tracking of a unified system[J]. Chin. Phys. Lett. ,2002,19(5) :632.
  • 8Liao Teh-Lu, Lin Sheng-Hang. Adaptive control and system and synchronization of lorenz systems[J ]. Journal of the Franklin Institute, 1999,336:925 - 937.
  • 9Gopalsamy K. Stability and oscillations in delay differential equations of population dynamics[ M]. Kluwer Academic Publishers,Dordrecht , 1992.
  • 10何衍庆,姜捷,江艳君,等.控制系统的分析、设计和应用[M].北京:化学工业出版社,2003.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部