期刊文献+

锅炉混煤掺烧的飞灰含碳量预测与运行优化 被引量:17

PREDICTION OF UNBURNED CARBON CONTENT IN FLY ASH AND OPERATION OPTIMIZATION FOR MIXEDLY BURNING BLENDED COAL IN BOILERS
在线阅读 下载PDF
导出
摘要 在对某电厂锅炉混煤掺烧的飞灰含碳量特性进行多工况热态测试的基础上,应用人工神经网络的非线性动力学特性及自学习特性,建立了飞灰含碳量特性的神经网络模型,检验样本的预测值与实测值的相对误差分别为1.14%、1.19%和2.45%,证实了该模型的可行性。将锅炉运行调节参数作为优化目标函数的自变量结合全局最优的遗传算法,针对无印尼煤掺烧、1台磨煤机掺烧和2台磨煤机掺烧3种工况进行了寻优并获得了最佳操作参数,飞灰含碳量分别由原来的2.25%、1.96%和1.08%降至1.87%、1.69%和0.73%,表明印尼煤的掺烧有助于降低飞灰含碳量,提高锅炉效率。同时,也对掺烧印尼煤工况下磨煤机或者磨煤机组合的选择进行了寻优,结果表明用B、C磨煤机进行掺烧为最佳方案。 On the basis of hot - state tests under many operating conditions for investigating the characters of unburned carbon in fly ash of boilers for mixedly burning blended coal,a neural network model has been established by using the nonlinear dynamics and self - learning characters of the artificial neu- ral network. The relative error between predicted value and measured value are 1.4%, 1.19%, and 2.45% respectively, comfirming the feasibility of said model. Taking the adjustment parameters in boiler operation as independent variables of the target function for optimization, and combining with the genetic algorithm in overall situations, directing against three typical operating conditions, namely blending Indonisian coal in 0,1, and 2 mills, the optimal operating parameters have been found and obtained,the unburned carbon content in fly ash has decreased from original 2.25% ,1.96% ,and 1.08% to 1.87~, 1.69% ,and 0. 73% respectively. It shows that the mixedly burbing of Indonisian coal is helpful to decrease the unburned carbon content in fly ash,enhancing the boiler efficiency.
出处 《热力发电》 CAS 北大核心 2010年第3期30-35,共6页 Thermal Power Generation
关键词 锅炉 飞灰含碳量 遗传算法 印尼煤 混煤掺烧 磨煤机 boiler unburned carbon content in fly ash genetic algorithm Indonisian coal mixedly burning of blended coal mills
  • 相关文献

参考文献8

二级参考文献49

共引文献192

同被引文献134

引证文献17

二级引证文献117

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部