期刊文献+

基于混合函数的KICA-LSSVM故障分类方法及应用 被引量:1

A Fault Classification Method of KICA-LSSVM and Its Application
在线阅读 下载PDF
导出
摘要 利用核独立成分分析(KICA)进行非线性特征提取,然后用最小二乘支持向量机建立故障分类模型。研究表明,不同核函数对模型的性能有很大影响。利用已有核函数构造混合核函数,提出基于混合核函数的KI-CA-LSSVM故障分类方法,并应用到某石化企业的润滑油生产过程。实验结果表明该方法具有很高的分类和泛化能力。 A kernel independent component analysis (KICA) was used for nonlinear feature extraction. A fault classification model based on LSSVM was proposed. The research showed that the performance of a classification model depended on different kernel functions. A combined kernel function could be developed by existing kernel functions. A fault classification method of KICA-LSSVM based on the combined kernel function was also represented, and the method was applied to a lubrication oil process. The implementation shows that the method has a good classification accuracy and generalization capability.
出处 《化工自动化及仪表》 CAS 北大核心 2010年第3期14-18,共5页 Control and Instruments in Chemical Industry
基金 广东省自然科学基金重点项目(07117421) 广东省自然科学基金重点项目(8351009001000002)
关键词 混合核函数 核独立成分分析 最小二乘支持向量机 特征提取 故障诊断 combined kernel function KICA LSSVM feature extraction fault diagnosis
  • 相关文献

参考文献10

  • 1RENGASWAMY R, VENKATSUBRAMANIAN V. A Syntactic Pattern Recognition Approach for Process Monitoring and Fault Diagnosis [ J ]. Engineering Application of Artificial Intelligent, 1995,8( 1 ) :35 -51.
  • 2VAPNIK V N. Statistical Learning Theory [ M ]. New York:John Wiley and Sons Inc, 1998.
  • 3SUYKENS J A K, VANDEVALLE J. Least Squares Support Vector Machine Classifiers [ J ]. Neural Processing Letters, 1999,9 ( 3 ) :293 - 300.
  • 4PAOLA C, ELENA C, GIORGIO V. Support Vector Machines for Candidate Nodules Classification [ J ]. Neurocomputing, 2005,68:281 - 288.
  • 5SUCh T,YANG Ch H. Feature Selection for the SVM:An Application to Hypertension Diagnosis [ J ]. Expert System with Application ,2006, doi : 10.10. 1016.
  • 6CAO L J,CHUA K S,CHONG W K,et al. A Comparison of PCA, Kernel PCA and ICA for Dimension Reduction in Support Vector Machine [ J ]. Neurocomputing, 2003,55 : 321 - 336.
  • 7彭佩星,王保良,李海青.基于ICA和ES-SVM的油气两相流空隙率测量[J].化工自动化及仪表,2007,34(4):60-62. 被引量:4
  • 8HYVARINEN A, ORJA E. Independent Component Analysis: Algorithm and Applications [ J ]. Neural Network,2000,13:411 -413.
  • 9BACH F R,JORDAN M I. Kernel Independent Component Analysis [ J ]. Journal of Machine Learning Research, 2002, (3) :1 - 48.
  • 10陈建平,Jerzy Wasniew ski.Cholesky分解递归算法与改进[J].计算机研究与发展,2001,38(8):923-926. 被引量:11

二级参考文献19

共引文献13

同被引文献89

引证文献1

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部