期刊文献+

基于HHT和SVM的运动想象脑电识别 被引量:46

Discrimination of movement imagery EEG based on HHT and SVM
在线阅读 下载PDF
导出
摘要 对运动想象脑电信号(EEG)分类识别是脑-机接口(BCI)研究领域的重要问题。本文通过经验模式分解(EMD)将EEG分解为一系列内蕴模式函数(IMF),并对重要IMF的瞬时幅度提取AR模型参数,同时对所有的IMF进行Hilbert变换(HT)得到Hilbert谱,进而求得瞬时能量(IE)。将得到的AR参数和IE,结合时域均值和中值绝对偏差估计(MAD),组成初始特征,然后利用经遗传算法(GA)优化的支持向量机(SVM)进行分类,得到识别结果。对2008年BCI CompetitionⅣDataset 1中想象左手和脚运动的两组数据进行识别,在仅仅使用少数通道的情况下,识别正确率分别达到84.7%和85.8%,初步验证了该方法的有效性。 Discrimination of movement imagery event-related EEG is an important issue in brain-computer interfaces (BCIs).In this paper,empirical mode decomposition(EMD) is employed to decompose the EEG into a series of intrinsic mode functions(IMFs),and then AR model parameters of instantaneous amplitude of some important IMFs can be obtained.Hilbert transform(HT) is conducted on all of the IMFs to get Hilbert spectrum,from which instantaneous energy(IE) can be gained.The obtained AR parameters and IE,combined with the mean of signal magnitude and median absolute deviation(MAD) estimate,form the initial features.Then support vector machine(SVM) optimized by genetic algorithm(GA) is adopted to achieve the optimal classification result.Two data sets on left hand and foot imagery of BCI CompetitionⅣ2008 Dataset 1 are selected to carry out discrimination,and the discrimination results are 84.7%and 85.8%,respectively in the case of just using a small number of channels,which indicate the efficiency of this algorithm.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2010年第3期649-654,共6页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金项目(60975079) 上海大学系统生物研究基金 机器人技术与系统国家重点实验室开放研究项目 上海大学研究生创新基金 上海大学"十一五"211建设项目资助
关键词 Hilbert-Huang变换(HHT) 遗传算法(GA) 支持向量机(SVM) 运动想象 分类识别 Hilbert-Huang transform(HHT) genetic algorithm(GA) support vector machine(SVM) movement imagery classification
  • 相关文献

参考文献17

二级参考文献63

  • 1吴延军,徐泾平,赵艳,程敬之.心音信号处理与识别[J].中国医疗器械杂志,1996,20(5):292-298. 被引量:10
  • 2Lemm S, Schafer C, and Curio G. BCI competition 2003-data set Ⅲ: Probabilistic modeling of sensorimotor μ rhythms for classification of imaginary hand movements [J]. IEEE Trans. on Biomedical Engineering, 2004, 51(6): 1077-1080.
  • 3Li Y Q and Guan C T. A semi-supervised SVM learning algorithm for joint feature extraction and classification in brain computer interfaces [C]. The 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, New York, USA, Aug.30-Sep.3, 2006: 2570-2573.
  • 4Lemm S, Blankertz B, and Curio G, et al.. Spatio-spectral filters for improving the classification of single trial EEG [J]. IEEE Trans. on Biomedical Engineering, 2005, 52(9): 1541-1548.
  • 5McFarland D J, Anderson C W, and Muller K R, et al.. BCI meeting 2005-workshop on BCI signal processing: Feature extraction and translation [J]. IEEE Trans. on Neural and Rehabilitation Systems Engineering, 2006, 14(2): 135-138.
  • 6Hammon P S and deSa V R. Preprocessing and meta-classification for brain- computer interfaces [J]. IEEE Trans. on Biomedical Engineering, 2007, 54(3): 518-525.
  • 7Wang Y J, Zhang Z G, and Li Y, et al.. BCI competition 2003-data set Ⅳ: An algorithm based in CSSD and FDA for classifying single-trial EEG [J]. IEEE Trans. on Biomedical Engineering, 2004, 51(6): 1081-1086.
  • 8Liao X, Yao D Z, and Wu D, et al.. Combining spatial filters for the classification of single-triM EEG in a finger movement task [J]. IEEE Trans. on Biomedical Engineering, 2007, 54(5): 821-831.
  • 9Friedman J, Hastie T, and Tibshirani R. Additive logistic regression: A statistical view of boosting [J]. The Annals of Statistics, 2000, 28(2): 337-407.
  • 10Blankertz B, Muller K R, and Curio G, et al.. The BCI competition 2003: Progress and perspectives in detection and discrimination of EEG single trials [J]. IEEE Trans. on Biomedical Engineering, 2004, 51(6): 1044-1051.

共引文献115

同被引文献492

引证文献46

二级引证文献369

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部