期刊文献+

基于粒子群算法的移动机器人全局路径规划策略 被引量:31

Global path planning method for mobile robots based on the particle swarm algorithm
原文传递
导出
摘要 提出了一种基于保收敛粒子群优化算法的移动机器人全局路径规划策略,为移动机器人在有限时间内找到一条避开障碍物的最短路径提供了一种解决方案.首先建立环境地图模型,将连接地图中起点和终点的路径编码成粒子,然后根据障碍物位置规划出粒子的可活动区域,在此区域内产生初始种群,使粒子在受限的区域内寻找最优路径.在搜索过程中,粒子群优化算法的加速系数和惯性权重均随迭代次数自适应调节.仿真实验表明算法可在起点与终点之间找到一条简单安全的最优路径.与其他文献所提的方法进行了对比研究,结果表明本文所提算法具有更快的搜索速度和更高的搜索质量. A global path planning method for mobile robots based on the guaranteed convergence particle swarm optimization algorithm is presented.A solution is provided for mobile robots to find the shortest path avoiding obstacles in a limited period of time.Firstly,an environmental map is set up and a path connecting the start point and the end point is coded as a particle.Then,a particular active region for particles is mapped out according to the location of obstacles.The initial particle population is generated within this region and particles fly in the active region to search for the optimum path.In the search process,both the acceleration coefficient and inertia weight of the particle swarm optimization algorithm are self-adaptively adjusted along with iteration processes.It is proved that the algorithm can plan out a simple and safe optimum path connecting the start point and the end point by simulation experiments.Comparative studies with a recently reported method show that the proposed algorithm has advantages such as faster search speed and higher search quality.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2010年第3期397-402,共6页 Journal of University of Science and Technology Beijing
基金 国家自然科学基金资助项目(No.60374032) 第36批国家留学回国人员科研启动基金资助项目
关键词 移动机器人 路径规划 粒子群优化算法 活动区域 mobile robot path planning particle swarm optimization active region
  • 相关文献

参考文献14

二级参考文献56

  • 1闻朝中,李智.粒子群算法在配电网络无功补偿优化中的应用[J].武汉工业学院学报,2004,23(1):18-21. 被引量:39
  • 2张纯刚,席裕庚.Robot path planning in globally unknown environments based on rolling windows[J].Science China(Technological Sciences),2001,44(2):131-139. 被引量:12
  • 3王小忠,孟正大.机器人运动规划方法的研究[J].控制工程,2004,11(3):280-284. 被引量:18
  • 4邰宜斌,席裕庚,李秀明.一种机器人路径规划的新方法[J].上海交通大学学报,1996,30(4):94-100. 被引量:14
  • 5[1]Eberhart R C, Kennedy J. A New Optimizer Using Particles Swarm Theory [M]. Proc Sixth International Symposium on Micro Machine and Human Science, Nagoya, japan, l995.
  • 6[2]Kennedy J, Eberhart R C. Particle Swarm Optimization[M]. IEEE International Conference on Neural Network, Perth, Australia, l995.
  • 7[7]Mamanurk R C, Chenoweth R D. Optimal Control of Reactive Power Flow for Improvement in Voltage Profiles and for Real Power loss Minimization[J]. IEEE Trans on PAS,1981,100(7):3185-3194.
  • 8[9]Sasson A M, Viloria F, Aboytes F. Optimal Load Flow Solution Using the Hessian Matrix[A]. IEEE Winter Meeting,1971:31-41
  • 9Kruusmaa M, Willemson J. Covering the path space: a casebase analysis for mobile robot path planning[J]. Knowledge-Based Systems,2003,16(5-6): 235-242.
  • 10Yahja A, Singh S, Stentz A. An efficient on-line path planner for outdoor mobile robots[J]. Robotics and Autonomous Systems,2000,32(2): 129-143.

共引文献652

同被引文献293

引证文献31

二级引证文献621

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部