期刊文献+

航空液压泵柱塞游隙增大故障诊断 被引量:6

Fault diagnosis for piston head looseness of aero hydraulic pump
在线阅读 下载PDF
导出
摘要 柱塞游隙增大是航空液压泵典型的渐进性故障之一,其故障特征模糊,样本有限,故障数据充满噪声,对其进行精确的故障诊断十分困难,因此提出了一种基于简约支持向量机的故障诊断方法.利用粗糙集对故障特征变量进行简约,去除冗余信息,在保证分类质量不变的前提下寻求覆盖系统故障特征的最小属性集合;将简约后的数据样本用来训练支持向量机进行故障分类.使用训练完成后的简约支持向量机进行故障诊断的实验结果表明,此种诊断方法适合于航空液压泵柱塞游隙增大的高精度故障诊断. Piston head looseness is a typical progressive failure of aero hydraulic pump.It is difficult to make precise fault diagnose because the fault feature is misty,the fault samples are insufficient and the measurable signals are full of structure coupling and noise besides failure feature.In order to solve above problems,a fault diagnosis method based on contracted support vector machine(SVM) was proposed.In the new method,rough set was utilized to reduce the fault characteristic value and eliminate redundancy in order to find the minimal attribute describing system fault characters on the premise of unchanged classification quality.The sample data disposed by rough set were used to train SVM to realize fault diagnosis.The experiment result of the trained contracted SVM shows that this diagnosis method is suitable for the high-precision fault diagnosis of the aero hydraulic pump.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2010年第3期261-264,共4页 Journal of Beijing University of Aeronautics and Astronautics
基金 航空科技创新基金资助项目(08D51010) 863高科技计划资助项目(2009AA04Z412) 111计划资助项目
关键词 简约支持向量机 粗糙集 故障诊断 航空液压泵 柱塞游隙增大 support vector machines rough set fault diagnosis aero hydraulic pump piston head looseness
  • 相关文献

参考文献4

二级参考文献11

  • 1Donoho D L. De--noising by Soft--thresholding. IEEE Trans. on Inf. Theory, 1995,41(3):613-627.
  • 2Han Liqun. The Theory Design and Application of Artificial Neural Network. Chemical Publication House, P. R. China, 2001.
  • 3Goumas S K, Zervakis M E. Classification of Washing Machines Vibration Signals Using Discrete Wavelet Analysis for Feature Extraction.IEEE Trans on Instrumentation and Measurement, 2002,51(3) :497-508.
  • 4Anderson T W. Introduction to Multivariate Statistical Analysis, Wiley, 1984.
  • 5Cohen A. Wavelets and Multiscale Signal Processing. Chapman and Hall. , 1995.
  • 6Borras D, Castilla M. Wavelet and Neural Structure: A New Tool for Diagnostic of Power System Disturbances. IEEE Trans. On Industry application, 2001,37(1):184-190.
  • 7彭玉华.小波变换与工程应用[M].北京,科学出版社,2002..
  • 8Goumas S K, Zervakis M E. Classification of washing machines vibration signals using discrete wavelet analysis for feature extraction[ J]. IEEE Trans on Instrumentation and Measurement, 2002, 51 (3) :497 -508.
  • 9胡昌华,张军波.基于MABLAB的系统分析与设计——小波分析[M].西安:西安电子科技大学出版社,2001:209—211.
  • 10翁海娜,房建成,杨功流,张振鹏.基于调频高斯小波变换的导航传感器故障诊断[J].北京航空航天大学学报,2002,28(4):477-480. 被引量:12

共引文献54

同被引文献40

  • 1王少萍,苑中魁,杨光琴.液压泵信息融合故障诊断[J].中国机械工程,2005,16(4):327-331. 被引量:34
  • 2朱林,孔凡让,尹成龙,郭丽,孔晓玲.基于仿真计算的某型飞机起落架收放机构的仿真研究[J].中国机械工程,2007,18(1):26-29. 被引量:25
  • 3刘红梅.直升机旋翼系统故障诊断与可用性研究[D].北京:北京航空航天大学自动化科学与电气工程学院,2008.
  • 4吴亚锋,郭军.基于AMESim的飞机液压系统仿真技术的应用研究[J].沈阳工业大学学报,2007,29(4):368-371. 被引量:37
  • 5Saimurugan K I, Ramachandran V S. Multi Component Fault Diagnosis of Rotational Mechanical System Based on Decision Treeand Support Vector Machine. Expert Systems with Applications, 2011,38: 3819-3826.
  • 6Steve R Gunn. Support Vector Machines for Classification and Regression. Technical Report of Facutty of Engineeritlg and Applied Science Department of Electronics and Computer Science, University of SouthThampton, 1998.
  • 7Achmad Widodo, Yang Bosuk. Support Vector Machine in Machine Condition Monitoring and Fault Diagnosis. Mechanical Sys- tems and Signal Processing, 2007, 21:2560-2572.
  • 8Sugumaran V, Muralildharan V, Ramachandran K I. Feature Selection Using Decision Tree and Classification through Proximal Support Vector Machine for Fault Diagnostics of Roller Bearing. Mechanical Systems and Signal Processing, 2007,21:930-942.
  • 9Reznik L, Jacques R. Fuzzy Expert System Shell Development with Computer Security Assessment Application [ C ]//Proc of IEEE. International Fuzzy System Conference London, UK,2007 : 261 - 267.
  • 10Liu Xiao-feng, Ma Lin, Mathew J. Machinery Fault Diagnosis Based on Fuzzy Measure and Fuzzy Integral Data Fusion Techniques [ J ]. Mechanical Systems and Signal Processing ,2009,23 ( 3 ) :690 - 700.

引证文献6

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部