期刊文献+

基于DM642的实时运动目标检测系统设计与实现 被引量:3

Design and Realization of Real-Time Moving Object Detection System Based on DM642
在线阅读 下载PDF
导出
摘要 针对图像数据量大,运动目标检测算法复杂,而在实际应用中又要求实时对图像处理等特点,以DSP器件TMS320DM642为核心搭建了实时运动目标检测系统的硬件平台。为了有效检测出运动目标,提出一种将基于混合高斯模型的背景差分法和三帧差分法相结合的算法。实验表明,该系统能有效检测出运动目标,且满足实时性要求。 Due to the large quantity of image data, the complexity of algorithm for moving objects cletecuon ana me real-time requirement in practical applications, a real-time moving objects detection system is designed which is constructed with the DSP chipset TMSC320DM642 as the core. An algorithm for moving objects detection based on Gaussian Mixture Model and Three-Frame Differencing is proposed to detect the moving objects. The experimental results indicate that the system can effectively detect moving objects and meet the real-time requirements.
出处 《计算机系统应用》 2010年第5期5-8,93,共5页 Computer Systems & Applications
关键词 运动目标检测 混合高斯模型 三帧差分法 TMSC320DM642 moving objects detection gaussian mixture model three-frame differencing TMSC320DM642
  • 相关文献

参考文献7

  • 1代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 2TVP5150A datasheet.Texas Instruments Incorporated,March 2004.
  • 3SAA7120H_21H datasheet.Texas Instruments Incorporated,Octorber 2002.
  • 4The TMS320DM642 Video/Imaging~xed-Pdnt Digital Signal Processor Data Manual.Literature Number:SPRS200B.Texas Instruments Incorporated,July 2002.
  • 5马义德,朱望飞,安世霞,邱会银,汤书森.改进的基于高斯混合模型的运动目标检测方法[J].计算机应用,2007,27(10):2544-2546. 被引量:39
  • 6Stauffer C,Grimson W.Adaptive background mixture models for real time tracking.Proc.of IEEE International Conference on Computer Vision and Pattern Recognition,1999,2:246-252.
  • 7Daniela Hall,Nascimento J,Ribeiro P,et al.Comparison of target detection algorithms using adaptive background models.The Second Joint IEEE International workshop on Visual Surveillance and Performance evaluation of Tracking and Surveillance,2005,10(15):113-120.

二级参考文献58

  • 1刘洁,张东来.关于自适应高斯混合背景模型的更新算法的研究[J].微计算机信息,2006(08S):241-242. 被引量:23
  • 2代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 3Kilger M.A shadow handler in a video-based real-time traffic monitoring system[A].In:Proceedings of IEEE Workshop on Applications of Computer Vision[C],Palm Springs,CA,USA,1992:1060 ~ 1066.
  • 4Elgammal A.Background and foreground modeling using nonparametric kernel density estimation for visual surveillance[J].Proceedings of IEEE,2002,90 (7):1151 ~ 1163.
  • 5Friedman N,Russell S.Image segmentation in video sequences:A probabilistic approach[A].In:Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence[C],Rhode Island,USA,1997:175 ~ 181.
  • 6Grimson W,Stauffer C,Romano R.Using adaptive tracking to classify and monitor activities in a site[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Santa Barbara,CA,USA,1998:22 ~29.
  • 7Stauffer C,Grimson W.Adaptive background mixture models for realtime tracking[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Fort Collins,Colorado,USA,1999,2:246~252.
  • 8Gao X,Boult T,Coetzee F,et al.Error analysis of background adaption[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Hilton Head Isand,SC,USA,2000:503 ~510.
  • 9Power P W,Schoonees J A.Understanding background mixture models for foreground segmentation[A].In:Proceedings of Image and Vision Computing[C],Auckland,New Zealand,2002:267 ~271.
  • 10Lee D S,Hull J,Erol B.A Bayesian framework for gaussian mixture background modeling[A].In:Proceedings of IEEE International Conference on Image Processing[C],Barcelona,Spain,2003:973 ~ 976.

共引文献205

同被引文献21

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部