期刊文献+

一种基于二代小波变换与盲信号分离的脑电信号处理方法 被引量:7

A Processing Method of EEG Signals Based on Second Generation Wavelet Transform and Blind Signal Separation
在线阅读 下载PDF
导出
摘要 目的研究对混杂有眼电和心电干扰脑电信号的处理方法。方法首先用二代小波硬/软阈值、折衷阈值、μ律阈值方法对脑电信号消噪,然后运用FastICA算法对消噪后仍含眼电和心电的脑电信号进行盲信号分离。结果二代小波μ律阈值方法对脑电信号有较好的消噪效果,FastICA算法能成功分离出脑电中眼电和心电的干扰。结论运用二代小波μ律阈值法对脑电消噪后再用FastICA算法对独立源产生的干扰进行分离是一种有效的预处理方法。 Objective To study a processing method for EEG signals mixed with EOG and ECG signals disturbance.Methods First,the EEG was denoised by the hard threshold method,the soft threshold method,the compromise threshold method and the μ law threshold method in the second generation wavelet,and then the denoised EEG which still contained EOG and ECG was separated by fast independent component analysis( FastICA) algorithm.Results The μ law threshold method of the second generation wavelet had better denoising effect and FastICA algorithm had more ideal separate performance.Conclusion It is an effective preprocessing method for EEG in denoising with the μ law threshold method of the second generation wavelet and then in separating disturbance of independent source with FastICA algorithm.
出处 《航天医学与医学工程》 CAS CSCD 北大核心 2010年第2期137-140,共4页 Space Medicine & Medical Engineering
基金 国家863项目(2008AA04Z212) 国家自然科学基金(60874102 60705010)
关键词 脑电信号 二代小波 μ律阈值法 消噪 FASTICA算法 EEG signals second generation wavelet μ law threshold method denoising fastICA algorithm
  • 相关文献

参考文献6

二级参考文献50

共引文献77

同被引文献71

  • 1孙勇,景博,覃征,张波.基于小波分析的信噪分离方法研究[J].计量学报,2006,27(2):153-155. 被引量:24
  • 2张小兵,马建仓,陈翠华,刘恒.基于最大信噪比的盲源分离算法[J].计算机仿真,2006,23(10):72-75. 被引量:27
  • 3刘长生,唐艳,汤井田.基于独立分量分析的脑电中眼电伪迹消除[J].计算机工程与应用,2007,43(17):230-232. 被引量:13
  • 4姚志湘,刘焕彬,粟晖.盲信号分离输出与源信号的一致性判断[J].华南理工大学学报(自然科学版),2007,35(5):50-53. 被引量:12
  • 5Shen M, Sun L, Chan F H Y. Method for extracting time-varying rhythms of electroencephalography via wavelet packet analysis [ J ] . Science, Measurement and Technology, IEE Proceedings, 2001,148 ( 1 ) : 23 - 27.
  • 6Millan J R, Mourino J. Asynchronous BCI and local neural classifiers: an overview of the Adaptive Brain interface porject [ J ]. IEEE Transactions on Neural Systerms and Rehabilitation Engineering, 2003, 11 (2) : 159 - 161.
  • 7Lanlan Yu. EEG De-noising Based on Wavelet Transformation [ C ]//ICBBE 2009 3rd International Conference on Bioinformatics and Biomedical Engineering, Beijing, China, 2009:1-4.
  • 8Lihong Zhang, Dingyun Wu, Lianhe Zhi. Method of removing noise from EEG signals based on HHT method [ C ]//ICISE. 2009 1st International Conference on Information Science and Engineering. Nanjing, China, 2009, 596 - 599.
  • 9Zhaojun Xue, Jia Li, Song Li, et al. Using ICA to Remove Eye Blink and Power Line Artifacts in EEG[ C]/! ICICIC. First International Conference on Innovative Computing, Information and Control. Beijing, China, 2006,107 - 110.
  • 10Park H J, Jeong D U, Park K S. Automated detection and elimination of periodic ECG artifacts in EEG using the energy interval histogram method [ J ]. IEEE Transactions on Biomedical Engineering, 2002, 49(12) : 1526 - 1533.

引证文献7

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部