期刊文献+

基于时空注意模型的视频分割算法 被引量:3

Video Segmentation Based on Spatial-temporal Attention Model
在线阅读 下载PDF
导出
摘要 针对已有视频分割算法对复杂动态背景下所出现的误分割问题,提出通过显著性映射构造时空注意特征,并采用分层条件随机场进行视频分割,提高分割准确率。算法首先根据视觉注意理论提取时域和空域特征,并建立加权混合模型。其次,采用该混合模型计算运动目标的显著性映射概率分布,有效地提取出运动目标区域。最后,在显著性映射概率分布基础上,采用高斯混合模型建立前景和背景的能量函数,构造分层条件随机场模型对这些特征能量函数进行分割建模,精确地提取出运动对象目标。实验结果表明,该算法即使对复杂动态背景下的视频也能够得到稳定的分割效果,有效地去除摄像机运动等所导致的误分割问题。 To deal with the error segmentation problem of the existing video algorithms under complex and dynamic scenes, the proposed method extracts spatial-temporal attention features with salient maps, and adopts hieiarchical conditional random field for video segmentation. Firstly, the algorithm constructs a weighted combination model based on spatial-temporal features by using information theory. Then, it uses the defined model to compute probability distribution of salient maps, which can locate region of moving object effectively. Finally, the Gaussian mixture model is adopted to construct energy functions with the above probability distribution, and the hierarchical conditional random field is used to constraint these feature energy functions to refine final segmentation. The experiment results showed that the algorithm can avoid the error segmentation problem induced by camera movement. So it is robust to handle the videos under complex and dynamic scenes.
出处 《中国图象图形学报》 CSCD 北大核心 2010年第5期729-735,共7页 Journal of Image and Graphics
基金 国家自然科学基金项目(60703001) 浙江省科技厅重大项目(2009C11G2020027) 浙江省教育厅项目(Y200805048)
关键词 视频分割 时空信息注意模型 分层条件随机场 video segmentation, spat'M-temporal attention model, hierarchical conditional random field
  • 相关文献

参考文献21

二级参考文献92

  • 1陈睿,邓宇,向世明,李华.结合强度和边界信息的非参数前景/背景分割方法[J].计算机辅助设计与图形学学报,2005,17(6):1278-1284. 被引量:13
  • 2吴思,林守勋,张勇东.基于动态背景构造的视频运动对象自动分割[J].计算机学报,2005,28(8):1386-1392. 被引量:19
  • 3包红强,张兆扬.基于时空标记场最大后验概率的多视频对象分割算法[J].电子与信息学报,2006,28(2):232-236. 被引量:2
  • 4盛骤 谢世千.概率论与数理统计(第2版)[M].北京:高等教育出版社,1989.59.
  • 5Tan W H, Coatrieux G, Solaiman B, et al. A region based segmentation using pixel block fuzzy similarity [ A ]. In: Proceedings of the 2nd IEEE International Conference on Information & Communication Technologies : from Theory to Applications [ C ], Damascus, Syria, 2006, 1: 1516-1521.
  • 6Chen Y T, Chen C S, Huang C R, et al. Efficient hierarchical method for background subtraction [ J]. Pattern Recognition, 2007, 40(10) : 2706-2715.
  • 7Zeng W, Du J, Gao W, et al. Robust moving object segmentation on H. 264/AVC compressed video using the block-based MRF model [J]. Real-Time Imaging, 2005, 11(4) : 290-299.
  • 8Huang Y R, Kuo C M, Huang F C. Block-based motion field segmentation for video coding[ J]. Journal of Visual Communication and Image Representation, 2005, 16(6) : 668-687.
  • 9Won C S. A block-based MAP segmentation for image compressions [ J ] . IEEE Transactions on Circuits and Systems for Video Technology, 1998, 8(5): 592-601.
  • 10Kim B C, Park R H. A Fast automatic VOP generation using boundary block segmentation [ J]. Real-Time Imaging, 2004, 10(2) : 117-125.

共引文献38

同被引文献17

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部