期刊文献+

一种自适应模糊阈值区间的图像分割方法 被引量:6

A Method of Adaptive Fuzzy Threshold Region for Image Segmentation
在线阅读 下载PDF
导出
摘要 针对图像分割边缘不准确的问题,研究了一种基于模糊理论的阈值区间的图像分割方法。在首先介绍的模糊阈值分割的基本原理上,提出了一种分层分割图像的思想。根据图像具有模糊的性质,利用模糊阈值法得到一个图像分割的调和阈值,再将每一层根据像素统计直方图信息得到一个本层次的阈值区域,最后用模糊阈值法得到的阈值调和阈值区域,使最终的分割阈值区间更精确。最后,根据相邻层相连背景像素相似的原则,逐层分割图像。实验结果表明该方法具有较好的分割效果。 Aimed at the problem that image segmentation is not accurate,research a method of image segmentation is based on fuzzy of the thresholding region.At first introduce the basic principles of fuzzy thresholding on segmentation.A hierarchical image segmentation idea is presented.According to the fuzzy nature of images obtain an attemper thresholding of image segmentation.Histogram to expose the pixels distributing in every layer,with the information of pixel statistic to figure out every layer's background pixel region.Finally,using the fuzzy thresholding attemper the thresholding region.By the relationship between adjoin layers of similar background pixels,segment layers.The experimental results demonstrate this kind of algorithm is effective and preferable.
出处 《计算机技术与发展》 2010年第5期121-123,127,共4页 Computer Technology and Development
基金 江苏省计算机信息处理技术重点实验室开放课题项目(08KJB520003)
关键词 像素统计 图像分割 阈值区域 调和阈值 自适应 pixel statistic image segmentation threshold region attemper threshold adaptive
  • 相关文献

参考文献8

二级参考文献35

  • 1唐英干,刘冬,关新平.一种改进的模糊熵红外图像分割方法[J].激光与红外,2006,36(4):321-323. 被引量:10
  • 2Rosenfeld A. The fuzzy geometry of image subsets. Pattern Recognition Letters, 1984,2(5):311-317.
  • 3Udupa JK, Samarasekera S. Fuzzy connectedness and object definition: Theory, algorithm and applications in image segmentation. Graphical Models and Image Processing, 1996,58(3):246-261.
  • 4Saha PK, Udupa JK, Odhner D. Scale-Based fuzzy connected image segmentation: Theory, algorithms, and validation. Computer Vision and Image Understanding, 2000,77(9):145-174.
  • 5Udupa JK, Saha PK, Lotufo RA. Relative fuzzy connectedness and object definition: Theory, algorithm and applications in image segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002,24(11):1485-1500.
  • 6He H, Chert YQ. Fuzzy aggregated connectedness for image segmentation. Pattern Recognition, 2001,34(12):2565-2568.
  • 7Lin Y, Tian J, He HG. Image segmentation via fuzzy object extraction and edge detection and its medical application. Journal of X-Ray Science and Technology, 2002,10(1-2):95-106,.
  • 8Sahoo PK, Soltani S, Wong AKC, Chen YC. A survey of thresholding techniques. Computer Vision Graphical Image Process, 1988,41 (2):233-260.
  • 9Kundu A, Mitra SK. A new algorithm for image edge extraction using a statistical classifier approach. IEEE Trans on Pattern Analysis and Machine Intelligence, 1987,9(4):569-577.
  • 10Adams R, Bischof L. Seeded region growing. IEEE Trans on Pattern Analysis and Machine Intelligence, 1994,16(6):641-647.

共引文献77

同被引文献62

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部