期刊文献+

基于神经网络的蛋白质三级结构预测 被引量:12

Prediction of Protein Tertiary Structure Based on Neural Network
在线阅读 下载PDF
导出
摘要 在伪氨基酸组成中加入与序列相关的影响因子能够提高蛋白质三级结构预测的准确率。将伪氨基酸组成的特征作为神经网络的输入,建立分类预测模型。选用粒子群优化算法对神经网络的参数进行优化。分类方法采用一对多的二分类方法。数据集选用Chou提出的204条蛋白质。实验结果使用Jackknife交叉验证,表明该方法能提高预测准确率。 Pseudoamino Acid(PseAA) composition can incorporate influence factor of a protein sequence,so as to remarkably enhance the predictive accuracy rate.The feature of PseAA composition is selected as the input of the neural network to make a model of classifying and predicting the protein third structure.Particle Swarm Optimization(PSO) algorithm optimizes the parameters of the neural network.A new classifying method named one vs.others binary classifier is introduced.Two hundred and four protein sequences studied by Chou is used as the dataset.Experimental result is tested by the rigorous Jackknife cross validation and it shows the method can improve the predictive accuracy rate.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第9期176-177,共2页 Computer Engineering
基金 国家自然科学基金资助项目(60573065) 山东省自然科学基金资助项目(Y2007G33)
关键词 伪氨基酸组成 粒子群优化算法 Jackknife交叉验证 Pseudoamino Acid(PseAA) composition Particle Swarm Optimization(PSO) algorithm Jackknife cross validation
  • 相关文献

参考文献9

  • 1Chothia C.One Thousand Families for the Molecular Biologist[J].Nature,1992,357(1):543-544.
  • 2Levitt M,Chothia C.Structural Patterns in Globular Proteins[J].Nature,1976,261(2):552-557.
  • 3张晓龙,程文.基于改进的禁忌搜索的蛋白质三维结构预测[J].计算机工程,2009,35(4):31-34. 被引量:5
  • 4Li Z R,Lin H H,Han L Y,et al.PROFEAT:A Web Server for Computing Structural and Physicochemical Features of Proteins and Peptides from Amino Acid Sequence[J].Nucleic Acids Research,2006,34(3):32-37.
  • 5Miyata T,Miyazawa S,Yasunaga T.Two Types of Amino Acid Substitutions in Protein Evolution[J].Journal of Molecular Evolution,1979,12(1):219-236.
  • 6Grantham R.Amino Acid Difference Formula to Help Explain Protein Evolution[J].Science,1974,185(4154):862-864.
  • 7Schneither R,Wrede P.The Rational Design of Amino Acid Sequences by Artificial Neural Networks and Simulated Molecular Evolution:De Novo Design of an Idealized Leader Peptidase Cleavage Site[J].Biophisical Journal,1994,66(3):335-344.
  • 8Chou Kuochen.Prediction of Protein Subcellular Locations by Incorporating Quasi-sequence-order Effect[J].Biochem.Biophys Res.Commun.,2000,278(1):477-483.
  • 9陈超 陈立选 邹小勇 等.基于多特征融合的蛋白质三级结构预测.理论生物学杂志,2008,253(2):388-392.

二级参考文献6

  • 1陈矛,黄文奇,吕志鹏.求解蛋白质折叠问题的模拟退火算法[J].小型微型计算机系统,2007,28(1):75-78. 被引量:3
  • 2Stillinger F H. Toy Model for Protein Folding[J]. Phys. Rev., 1993, 48(2): 1469-1477.
  • 3Glover F. Future Paths for Integer Programming and Links to Artificial Intelligence[J]. Computers and Operations Research, 1986, 13(5): 533-549.
  • 4Hsu H P, Mehra V, Grassberger P. Structure Optimization in an Off-lattice Protein Model[J]. Phys. Rev., 2003, 68(3): 31-34.
  • 5Bachmann M, Arkin H, Janke W. Multicanonical Study of Coarse-grained Off-lattice Models for Folding Heteropolymers[J]. Phys. Rev., 2005, 71(3): 1-15.
  • 6Kim S Y, Lee S B, Lee Jooyoung. Structure Optimization by Conformational Space Annealing in an Off-lattice Protein Model[J]. Phys. Rev., 2005, 72(1): 61-66.

共引文献5

同被引文献96

引证文献12

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部