期刊文献+

基于MFCC和短时能量混合的异常声音识别算法 被引量:29

Abnormal audio recognition algorithm based on MFCC and short-term energy
在线阅读 下载PDF
导出
摘要 针对现行异常声音识别算法复杂度高和特征识别率低的问题,将梅尔频率倒谱系数(MFCC)与短时能量混合特征应用到异常声音识别系统中。该混合特征使得高斯混合模型(GMM)分类器可获得比使用MFCC特征及其差分MFCC更好的分类性能。给出了系统实现的具体步骤,并通过仿真实验证明了该算法的有效性,分类器的平均识别率可达到90%以上,并且计算复杂度小。 Concerning the high complexity and low rate in abnormal audio recognition,the abnormal audio recognition system based on the Mel-Frequency Cepstrum Coefficients(MFCC)and short-term energy was proposed.This feature vector made the Gaussian Mixture Model(GMM)classifier outperform MFCC and Differential MFCC features in classification.The classifier can achieve an average recognition rate of more than 90%,and small computational complexity.The steps of system implementation were elaborated.The simulation results prove the effectiveness of the proposed algorithm.
出处 《计算机应用》 CSCD 北大核心 2010年第3期796-798,共3页 journal of Computer Applications
基金 国家自然科学基金资助项目(60702025)
关键词 异常声音识别 梅尔倒谱系数 短时能量 高斯混合模型 abnormal audio recognition Mel-Frequency Cepstrum Coefficient(MFCC) short-term energy Gaussian Mixture Model(GMM)
  • 相关文献

参考文献7

  • 1ZAJDEL W,KRIJNDERS J D,ANDRINGA T,et al.CASSANDRA:Audio-video sensor fusion for aggression detection[C]// Proceedings of the 2007 IEEE International Conference on Advanced Video and Signal based Surveillanace.London:IEEE Computer Society,2007:200-205.
  • 2RABAOUI A,DAVY M,ROSSIGNOL S,et al.Using one-class SVMs and wavelets for audio surveillance[J].IEEE Transactions on Information Forensics and Security,2008,3(4):763-775.
  • 3RABAOUI A,LACHIRI Z,ELLOUZE N.Using HMM-based classifier adapted to background noises with improved sounds features for audio surveillance application[J].International Journal of Signal Processing,2008,5(1):46-55.
  • 4RADHAKRISHNAN R,DIVAKARAN A,SMARAGDIS A.Audio analysis for surveillance applications[C]// Proceedings of the 2005 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics.Washington,DC:IEEE Computer Society,2005:158-161.
  • 5QIN JIAN-ZHAO,CHENG JUN,WU XIN-YU,et al.A learning based approach to audio surveillance in household environment[J].International Journal of Information Acquisition,2006,3(3):213-219.
  • 6RADHAKRISHNAN R,DIVAKARAN A.Systematic acquisition of audio classes for elevator surveillance[C]// SPIE Image and Video Communications and Processing.San Jose CA:SPIE,2005,5685:64-71.
  • 7WANG JIA-CHING,WANG JHING-FA,WENG YU-SHENG.Chip design of MFCC extraction for speech recognition[J].Integration,2002,32(1/2):111-131.

同被引文献219

引证文献29

二级引证文献193

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部