期刊文献+

具有年龄结构和常数迁移率的SIR模型 被引量:2

The age-structured SIR model with constant immigration
在线阅读 下载PDF
导出
摘要 建立了具有年龄结构和常数迁移率的SIR模型,并研究了该模型的有关性态.得到了基本再生数R0的表达式,证明了当R0<1时,系统存在唯一全局渐近稳定的无病平衡态;当R0>1时,系统存在地方病平衡态,并且在地方病平衡态处的线性化系统的特征方程无非负实根. This paper establishes an age-structured SIR model with constant immigration,and the character of the model is studied.The expression of the reproductive number R0 is obtained.When R0 is less than one,it is proved that the disease-free equilibrium exists uniquely and it is global asymptotically stable.When R0 is above one,it is proved that the endemic equilibrium exist,and the characteristic equation of the linearized system at the endemic equilibrium has no nonnegative real root.
作者 苏细容 刘胜
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2010年第3期6-9,共4页 Journal of Northwest Normal University(Natural Science)
基金 国家科技支撑计划资助项目(2006BAD32B03-5)
关键词 SIR模型 年龄结构 常数迁移率 基本再生数 稳定性 SIR model age-structured constant immigration reproductive number stability
  • 相关文献

参考文献7

二级参考文献24

  • 1[1]MCKENDRICK A. Applications of mathematics to medical problems[J]. Proc Edinburgh Math Soc,1926,44:98-130.
  • 2[2]HOPPENSTEADT F. An age structured epidemic model[J]. J Franklin Inst, 1974,197: 325-333.
  • 3[3]COOKE K, BUSENBERG S. Vertically transmitted diseasd,in nonlinear phenomena in mathematical sciences[M]. V Lakshmikantham ed. Academic Press,New York, 1982. 189-197.
  • 4[4]BUSENBERG S,IANNELLI M ,THIEME H. Global behavior of an age-structured epidemic model[J]. SIAM J Math Anal, 1991,22 (4): 1065-1080.
  • 5[5]IANNELLI M,MILNER F,PUGLIESE A. Analytical and numerical results for the age-structured S-I-S epidemic model with mixed inter-intracohort transmission[J]. SIAM J Math Anal ,1992,23(3) :662-688.
  • 6[6]EL-DOMA M. Analysis of an age-dependent SIS epidemic model with vertical transmission and proportionate mixing assumption[J]. Math Comput Model, 1999,29: 31-43.
  • 7[7]CHA Y,IANNELLI M,MILNER E. Existence and uniqueness of endemic states for the age-structured SIR epidemic model[J ]. Mathematical Biosciences, 1998,150:1 7 7-190.
  • 8[8]GREENHALGH D. Analytical threshold and stability results on age-structured epidemic models with vaccination[J].Theoretical Population Biology, 1988,33: 266-290.
  • 9[9]INABA H. Threshold and stability results for an age-structured epidemic model[J]. J Math Biol, 1990,28:411-434.
  • 10[10]WEBB G B. Theory nonlinear age-dependent population dynamics[M]. New York and Basel :Marcel Dekker,1985.

共引文献22

同被引文献10

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部