期刊文献+

基于支持向量机的彩色滤波阵列插值方法 被引量:3

Support Vector Machines Based Color Filter Array Interpolation Scheme
在线阅读 下载PDF
导出
摘要 针对已有彩色滤波阵列插值方法的结果图像存在边缘模糊、虚假色的问题,提出了图像相关性与支持向量机将结合的插值方法。该方法以色彩相关性为基础构造色差平面,在色差平面上根据空间相关性选择适当的邻近点输入模式训练支持向量机,然后用训练的支持向量机及输入模式估计出未知像素点对应的色差,最后计算出各像素点未知的彩色像素值。实验结果表明,与已有算法相比,该算法结果图像的PSNR值、NCD值及视觉效果均有显著改善。 To effectively reduce color artifacts and blurring of the CFA interpolation images,a support vector machines (SVM) based interpolation scheme is proposed,in which support vector regression (SVR) is used to estimate the color difference between the two color channels with applying spectral correlation of the R,G,B channels.The neighbor training sample models are selected on the color difference plane with considering spatial correlation,and the unknown color difference between two color channels is estimated by the trained SVM and input pattern,then the missing color values at each pixel can be obtained.Simulation results indicate that the proposed scheme produces visually pleasing full-color images and obtains higher PSNR and smaller NCD results than other conventional CFA interpolation algorithms.
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2010年第3期145-150,共6页 Journal of Sichuan University (Engineering Science Edition)
基金 国家自然科学基金资助项目(30800240) 山东省自然科学基金资助项目(Z2007G07 Y2007G45) 哈尔滨工业大学(威海)研究基金资助项目(HIT(WH)200723) HIT(WH)ZB200802)
关键词 图像插值 彩色滤波阵列 支持向量机 支持向量回归机 image interpolation color filter array Support Vector Machine (SVM) Support Vector Regression (SVR)
  • 相关文献

参考文献10

  • 1Rajeev R, Wesley E, Griff L, et al. Demosaicking methods for Bayer color arrays [ J]. Journal of Electronic Imaging, 2002, 11 (3) :306 -315.
  • 2Lukac R, Plataniotis K N. Universal demosaieking for imaging pipelines with an RGB color filter array [ J ]. Pattern Recognition ,2005,38 ( 11 ) :2208 - 2212.
  • 3Pei S C ,Tam I K. Effective color interpolation in CCD color filter array using signal correlation[J]. IEEE Trans on Circuits and Systems for Video Technology,2003,13 (6) :503 -513.
  • 4Chang L L, Tan Y P. Effective use of spatial and spectral correlations for color filter array demosaicking [ J ]. IEEE Trans on Consumer Electronics ,2004,50 (1) :355 -355.
  • 5VaprtikV.统计学习理论的本质[M].张学工,译.北京:清华大学出版社,2000.
  • 6张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2288
  • 7Ni K S, NguyenT Q. Image superresolution using support vector regression [ J ]. IEEE Trans on Image Processing, 2007,16 (6) :1596 - 1610.
  • 8Ma Liyong Shen Yi Ma Jiachen.Local spatial properties based image interpolation scheme using SVMs[J].Journal of Systems Engineering and Electronics,2008,19(3):618-623. 被引量:2
  • 9Lukac R, Plataniotis K N. Color filter arrays: Design and performance analysis [ J ]. IEEE Trans on Consumer Electronics ,2005,51 (4) : 1260 - 1267.
  • 10Chang C C,Lin C J. LIBSVM: A library for support vector machines[ EB/OL]. http://www, csie. ntu. edu. tw/- cjlin /libsvm ,2001.

二级参考文献9

  • 1Thbvenaz P, Blu T, Unser M. Interpolation revisited.IEEE Trans. on Medical Imaging, 2000, 19(7): 739-758.
  • 2Plaziac N. Image interpolation using neural networks. IEEE Trans. on Image Processing, 1999, 8(11): 1647-1651.
  • 3Cristianini N, Shawe-Taylor J. Introduction to support vector machines. Cambridge University Press, 2000.
  • 4Ma Liyong, Ma Jiachen, Shen Yi. Error estimate based support vector machines image interpolation algorithm. Journal of Harbin Institute of Technology, 2005, 37(S4): 88-88.
  • 5Ma Liyong, Ma Jiachen, Shen Yi. Support vector machines based image interpolation correction scheme. Lecture Notes in Artificial Intelligence, 2006, 4062: 679-684.
  • 6Zheng S, Tian J, Liu J. Research of SVM-based image interpolation algorithm optimization. Journal of Image and Graphics, 2005, 10A(3): 338-343.
  • 7Wang J, Ji L. Image Interpolation and error concealment scheme based on support vector machine. Journal of Image and Graphics, 2002, 7A(6): 558-564.
  • 8Chang C C, Lin C J. LIBSVM: a library for support vector machines. 2001. Software available at http://www.csie. ntu. edu. tw/-cjlin/libsvm.
  • 9卢增祥,李衍达.交互支持向量机学习算法及其应用[J].清华大学学报(自然科学版),1999,39(7):93-97. 被引量:42

共引文献2288

同被引文献37

  • 1郑胜,田金文,柳健.基于向量机的图像插值算法研究[J].中国图象图形学报(A辑),2005,10(3):338-343. 被引量:4
  • 2PLAZIAC N. Image interpolation using neural networks [ J ]. IEEE Trans on Image Processing, 1999,8( 11 ) :1647-1651.
  • 3LIANG Lu-ming, ZHAO Huml-xi, ZOU Bei-ji. Image intertlalion by blending kernels[ J 1. Signal Processing Letters, 2008,15:805-808.
  • 4HAN J W,KIM J H,CHEON S H ,et al. A novel image interpellation method using the bilateral filter [ J ]. IEEE Trans on Consumer Electronics,2010,56( 1 ) : 175-181.
  • 5DONG Wei-sheng,ZHANG l.ei, LUKAC R,et al. Spruce representation based inuige inteq',)lation with non-h:al autoregqessive mMeling [ J ]. IEEE Trans on Image Processing, 2013,22(4) :1382-1394.
  • 6JIA Xiao-fen,ZHAO Bai-ting,CHEN Zhao-quazl. (-netic algorithm opti- mization based support vector machine image interllation [ C ]//Pr. of Cross Strait Quad-Regional Radio Science and Wireless Technolo,' Con- ference. Washington DC : IEEE Computer Society, 2011 : 1319-1322.
  • 7JIA Xiao-fen,ZHAO Bai-ting. Demosaicing algorithm tbr color filter aTays based on SVMs [ J ]. International Journal of Gomlauter Science Issues,2013,10( I ) :212-217.
  • 8CORTES C, VAPNIK V. Support vector networks[J ]. Machine Learning, 1995,20(3 ) :273-297.
  • 9PAWLAK Z. Rough sets[ J ]. International Journal of Computer and Information Science, 1982,11:341-356.
  • 10HE Qiang, XIE Zong-xia, HU ()ing-hua,et a/. Neighborhood hased sample and feature selection tr SVM classification learning [ ,I ]. Neurocomputing, 2011,74(10) :1585-1594.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部