期刊文献+

基于随机加速系数的粒子群优化算法 被引量:6

A New Particle Swarm Optimization with Random Acceleration
在线阅读 下载PDF
导出
摘要 针对粒子群算法中加速系数的取值问题,对C1和C2的各种取值策略做了充分调查分析,得到参数C1和C2对算法性能的影响规律,并提出了一种基于随机加速系数的粒子群优化算法.该算法在迭代的每一代中,加速系数取一定范围内随机产生的一组C1和C2的组合,通过非对称的、范围更大的C1和C2取值来增加算法的多样性,避免了算法早熟.在典型测试函数上进行对比实验,结果验证了新算法在优化性能和稳定性上高于传统粒子群优化算法. Research into setting the values of the acceleration coefficients C1 and C2 in particle swarm optimization(PSO) is one of the most significant areas for performance improvement. On the basis of the investigation of C1 and C2, this paper present the parameters investigation conclusion and proposed a novel PSO which C1 and C2 are generated as a couple of random numbers within a certain range in each iteration process. The experimental results show that the new method per: forms better than the methods with fixed values of C1 and C2 for most benchmark problems tested.
作者 黄少荣
出处 《微电子学与计算机》 CSCD 北大核心 2010年第6期114-117,共4页 Microelectronics & Computer
关键词 粒子群优化算法 随机加速系数 单峰函数 多峰函数 particle swarm optimization(PSO) random acceleration coefficients unimodal funtion multimodal funtion
  • 相关文献

参考文献10

  • 1Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proc IEEE International Conference on Neural Networks.IV Piscataway,NJ:IEEE Service Center,1995:1942-1948.
  • 2Kennedy J.Mind and culture:particle swarm implications socially intelligent agents[C]//Papers from the 1997 AAAI Fall Symposium.Menlo Park,1997:67-72.
  • 3Snganthan P N.Particle swarm optimizer with neighborhood operator[C]//Proc of the congress on Evolutionary computation.Washington DC,1999:1958-1962.
  • 4Ratnawecra A,Halgamuge S.Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J].Evolutionary Computation,2004,8(3):240-255.
  • 5冯翔,陈国龙,郭文忠.粒子群优化算法中加速因子的设置与试验分析[J].集美大学学报(自然科学版),2006,11(2):146-151. 被引量:22
  • 6陈水利,蔡国榕,郭文忠,陈国龙.PSO算法加速因子的非线性策略研究[J].长江大学学报(自科版)(上旬),2007,4(4):1-4. 被引量:28
  • 7李丽,牛奔.粒了群优化算法[M].北京:冶金工业出版社,2009:61-64.
  • 8崔红梅,朱庆保.微粒群算法的参数选择及收敛性分析[J].计算机工程与应用,2007,43(23):89-91. 被引量:33
  • 9Zhan Z H,Xiao J,Zhang J,et al.Adaptive control of acceleration coefficients for particle swarm optimization based on clustering analysis[C]//Proceeding IEEE Congress on Evolutionary Computation.Singapore,2007:3276-3282.
  • 10Zhan Zhihui,Zhang jun,Li yun,et al.Adaptive particle swarm optimization[J].IEEE Transactions on Systems,Man,and Cybernetics-Part B:Cybernetics,2009,39(6):1362-1380.

二级参考文献17

  • 1陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:311
  • 2冯翔,陈国龙,郭文忠.粒子群优化算法中加速因子的设置与试验分析[J].集美大学学报(自然科学版),2006,11(2):146-151. 被引量:22
  • 3Kennedy J,Eberhart R.Particle Swarm Optimization[C] //IEEE Service Center.Proc.IEEE Int.Conf.on Neural Networks.Perth:Perth IEEE Press,1995:1942-1948.
  • 4Shi Yu hui,Eberhart R.Parameter selection in particle swarm optimization[C] //IEEE Proc.of the 7th Annual Conf on Evolutionary Programming.Washington D C:Springer-Verlag,1998:591-600.
  • 5Kenneay J,Eberhart R,Shi Yu hui.Swarm intelligence[M].San Francisco:Morgan Kaufman,2001.
  • 6Suganthan P N.Particle swarm optimizer with neighborhood operator[C] //IEEE Service Center.Proc.IEEE Int.Congr.Evolutionary Computation.Washinington D C:IEEE Press,1999:1958-1962.
  • 7Ratnaweera A,Halgamuge S.Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J].Evolutionary Computation,2004,8(3):240-255.
  • 8Anqeline P J.Using Selection to Improve Particle Swarm Optimization[C] //IEEE.IEEE International Conference on Evolutionary Computation.Anchorage:[s.n],1998.
  • 9Ven den Bergh F,Engelbrecht A P.Using Neighbourhoods with the Guaranteed Convergence PSO[C] //IEEE Service Center.Proceedings of the 2003 IEEE Swarm Intelligence Symposium.Indianapolis:[s.n],2003:235-242.
  • 10Shi Y H,Eberhart R C.Fuzzy Adaptive Particle Swarm Optimization[C]//IEEE Service Center.Proceedings of the Congress on Evolutionary Computation.Seoul:[s.n],2001.

共引文献76

同被引文献48

  • 1魏博,张德明,李铮.运行图调整在地铁行车组织中的应用[J].铁道通信信号,2013,0(S1):71-74. 被引量:6
  • 2刘靖明,韩丽川,侯立文.一种新的聚类算法——粒子群聚类算法[J].计算机工程与应用,2005,41(20):183-185. 被引量:25
  • 3Jain A K, Murty M N, Flynn P J. Data clustering: A survey[J]. ACM Computer Survey, 1999 (31).. 264 --323.
  • 4Eberhart R C, Shi Y. Particle swarm optimization:de- velopments, applications and resources[C]// Proceed- ings of the IEEE Congress on Evolutionary Computa- tion. Piscataway, NJ: IEEE Service Center, 2001: 81-- 86.
  • 5Kennedy J, Eberhart R. Particle swarm optimization [C]//Proc of IEEE International Conference on Neural Network. Perth, Australia. Piseataway, NJ.. IEEE Service Center, 1995 : 1942-1948.
  • 6Lee K Y, ElzSharkawi M A. Fundamentals of particleswarm techniques. Modern heuristic optimization tech= niques with applications to power systems[C]// IEEE Power Engineering Society, 2002. USA: New York, 2002:45-51.
  • 7Jain A K, Murty M N, Flynn P J. Data clustering, a survey [J]. ACM Computer Survey, 1999 (31) : 264 -323.
  • 8Eberhart R C, Shi Y. Particle swarm optimization., devel- opments, applications and resources[C].// Proceedings ofthe IEEE Congress on Evolutionary Computation. Piscat-.
  • 9Lee K Y, E12Sharkawi M A. Modern heuristic optimiza- tion techniques with applications to power systems[M]. IEEE Power Engineering Society, 2002 : 45- 51.
  • 10Kennedy J, Eberhart R. Particle swarm optimization [C]//Proc IEEE Int Conf on Neural Networks. Aus- tralia: Perth, 1995 : 1942- 1948.

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部