期刊文献+

“高温大变形+超快冷”工艺在管线钢生产中的应用 被引量:8

Application of Large Deformation at High Temperature and Ultra Fast Cooling Process in Production of Pipeline Steel
原文传递
导出
摘要 通过热模拟和实验室热轧试验,研究了"高温大变形+超快速冷却"工艺和传统TMCP工艺下试验钢显微组织的区别和强韧性规律。结果表明,超高冷却速率使过冷度变大,形核率升高,新相形核主要以晶内形核为主。"高温大变形+超快速冷却"工艺得到的细化针状铁素体、高密度位错以及弥散细小的析出物保证了材料的综合性能,使热轧钢板综合性能达到了X90标准,并且轧制力比传统TMCP工艺低1 000~7 000 kN。高温大变形后的弛豫过程使组织严重粗化,强韧性明显降低。 The microstructural differences and mechanical properties of the tested steel rolled by ultra fast cooling process and traditional TMCP process were investigated by means of thermal simulation and laboratory hot rolling tests. It is demonstrated that condensate depression and nucleation rate increase with increasing cooling velocity and intracrystalline nucleation is main nucleation form of the new phase. Mechanical properties of the rolled plates in laboratory can exceed X90 grade because of the refining acicular ferrite, the dislocation with high density and the refining precipitation. Otherwise, the value of rolling force of high temperature process is lower than that of traditional TMCP process. Relaxation process makes mechanical properties of the tested plates worse because of grain growth coursing.
出处 《钢铁》 CAS CSCD 北大核心 2010年第6期49-53,58,共6页 Iron and Steel
基金 国家自然科学基金资助项目(50504007)
关键词 新一代超快冷技术 形核 析出强化 轧制力 管线钢 new generation thermomechanic control process (TMCP) nucleation precipitation strengthening rolling force pipeline steel
  • 相关文献

参考文献7

二级参考文献23

  • 1郑磊.宝钢管线钢的发展回顾[J].中国冶金,2004,14(11):24-28. 被引量:2
  • 2王春明,吴杏芳.X70管线钢微观组织分析[J].鞍钢技术,2004(5):21-25. 被引量:12
  • 3付俊岩.Nb微合金化和含铌钢的发展及技术进步[J].钢铁,2005,40(8):1-6. 被引量:74
  • 4罗海文,董瀚.高级别管线钢X80-X120的研发与应用[J].中国冶金,2006,16(4):9-15. 被引量:50
  • 5Lee D M, Choi S G. Application of on-line adaptable neural network for the roiling force set-up of a plate mill [J] Engineering Applications of Artificial Intelligence, 2004, 17(5):557-565.
  • 6Zhu H P, Yu A B. A theoretical analysis of the force models in discrete element method[J]. Powder technology, 2006, 161(2):122- 129.
  • 7Son J S, Lee D M, Kim I S, et al. A study on online learning neural network for prediction for rolling force in hotrolling mill[J]. Journal of Materials Processing Technology, 2005,164/165:1612-1617.
  • 8Jiang Z Y, Tieu A K, Lu C, et al. A three-dimensional thermo-rnechanical finite element model of complex strip roiling considering sticking and slipping friction[J]. Journal of Materials Processing Technology , 2002, 125/126:649 - 656.
  • 9Wang J C, Chen C Z. On the optimization of a rolling-force model for a hot strip finishing line[J]. ISA Transactions, 2007,46(4) :527 - 531.
  • 10Sellars C M, Whiteman J A. Recrystallization and gain growth in hot rolling[J]. Metal Science, 1978, 13 (3/4): 187- 194.

共引文献195

同被引文献62

引证文献8

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部