期刊文献+

基于PCA及SVM的运动想象脑电信号识别研究 被引量:4

Classification of Motor Imagery EEG Based on PCA and SVM
在线阅读 下载PDF
导出
摘要 为了解决脑机接口(BCI)中不同意识任务下运动想象脑电信号的分类问题,提出了一种基于PCA及SVM的识别方法。针对Hilbert-Huang变换和AR模型提取的脑电信号特征,首先采用主成分分析PCA对高维特征向量进行降维处理,然后用支持向量机进行分类。最后将本方法分类结果和Fisher线性分类、概率神经网络分类结果进行比较。实验结果表明,该方法分类正确率较高,复杂度低,具有一定的有效性,可用于脑机接口中。 In order to solve the problem of the electroencephalogram (EEG) classification under different imagery task in brain computer interfaces (BCI), a new recognition method based on principle component analysis (PCA) and support vector machine (SVM) is presented in this paper. Four features of motor imagery EEG signals extracted by combining the HHT with AR model, first, PCA was utilized to reduce dimensions of the high dimensional feature vectors. Then, SVM was used to classify different EEG patterns of motor imagery. Finally, this method was compared with Fisher LDA (linear discriminant analysis ) and probabilistic neural network (PNN). Experimental results showed that the proposed method could classify different EEG patterns of motor imagery effectively due to its higher classification accuracy and lower complexity so as to be utilized in online BCI system.
出处 《北京生物医学工程》 2010年第3期261-265,共5页 Beijing Biomedical Engineering
基金 国家自然科学基金(60975079) 上海大学系统生物研究基金 上海大学"十一五"211建设项目资助
关键词 脑机接口 主成分分析 支持向量机 希尔伯特-黄变换 brain computer interface (BCI) principle component analysis ( PCA ) support vector machine (SVM) Hilbert-Huang transform (HHT)
  • 相关文献

参考文献15

  • 1Mason SG,Birch GE.A general framework for brain-computer interface design[J].IEEE Transactions,Neural System and Rehabilitation Engineering,2003,11(1):70-85.
  • 2徐宝国,宋爱国.单次运动想象脑电的特征提取和分类[J].东南大学学报(自然科学版),2007,37(4):629-633. 被引量:10
  • 3Penga ZK,Tse PW,Chu FL.A comparison study of improved Hilbert-Huang transform and wavelet transform:Application to fault diagnosis for rolling bearing[J].Mechanical Systems and Signal Processing,2005:974-988.
  • 4Huang ML,Wu PD,Liu Ying,et al.Application and Contrast in Brain-Computer Interface between Hilbert-Huang Transform and Wavelet Transform[C].The 9th International Conference for Young Computer Scientists,2008:1706-1710.
  • 5Bashashati A,Fatourechi M,Ward RK,et al.TOPICAL REVIEW:A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals[J].Journal of Neural Engineering,2007,4:R32-R57.
  • 6Guyon I,Elisseeff A.An introduction to variable and feature selection[J].Journal of Machine Learning Research (S0885-6125),2003,3(1):1157-1182.
  • 7Lotte F,Congedo M,Lecuyer A,et al.TOPICAL REVIEW:A review of classification algorithms for EEG-based brain-computer interfaces[J].Journal of Neural Engineering,2007,4:R1-R13.
  • 8孙见青,汪荣贵,胡韦伟,李守毅.一种新的基于NGA/PCA和SVM的特征提取方法[J].系统仿真学报,2007,19(20):4823-4826. 被引量:6
  • 9Benjamin Blankertz,Guido Dornhege,Matthias Krauledat,et al.The non-invasive Berlin Brain-Computer Interface:Fast acquisition of effective performance in untrained subjects.NeuroImage[J],2007,37:539-550.
  • 10Huang NE,Zheng S,Long SR.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[C]//Proceedings of the Royal Society of London,1998,454(A):903-995.

二级参考文献43

  • 1王蔚,张胜,宁新宝,王俊,李乐加.精神分裂症患者脑电信号多重分形的异常[J].中国生物医学工程学报,2004,23(6):511-515. 被引量:2
  • 2白树林,谢松云,张玉梅,杨金孝.基于灰色系统理论的脑电特征提取[J].贵州工业大学学报(自然科学版),2005,34(6):55-59. 被引量:6
  • 3乔立岩,彭喜元,马云彤.基于遗传算法和支持向量机的特征子集选择方法[J].电子测量与仪器学报,2006,20(1):1-5. 被引量:24
  • 4边肇祺 张学工.模式识别[M].北京:清华大学出版社,2004..
  • 5VAPNIK VN. The Nature of Statistical Learning Theory[Z]. NY:Springer-Verlag, 1995.
  • 6VAPNIK VN . An overview of statistical Learning Theory [ J ] .IEEE Trans. Neural Network, 1999, 10(5):988-999.
  • 7CRISTIANINI N, TAYLOR JS. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods [ M]. New York: Cambridge University Press , 2000.
  • 8LIN SL, TSAI Y J, LIOU CY. Conscious mental tasks and the EEG signals[ J] . Medical &Biological Engineering &computing, 1993,31:421 -425.
  • 9KEERTHI S, LIN C-J. Asymptotic Behavior of Support Vector Machines with Gaussian Kernel [ J]. Nerual Computation, 2003, 15:1667 - 1689.
  • 10BLANCO S, DPATTELLIS C, ISAACSON S, et al. Time-Frequency Analysis of Electroenc ephalograms series(Ⅱ) : Gabor and Wavelet Transforms[J]. Physical Review E, 1996, 54(6) :6661 -6672.

共引文献2322

同被引文献33

引证文献4

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部