期刊文献+

基于改进非支配排序遗传算法的多目标柔性作业车间调度 被引量:140

Improved NSGA-Ⅱ for the Multi-objective Flexible Job-shop Scheduling Problem
在线阅读 下载PDF
导出
摘要 采用多目标进化算法解决具有工件释放时间、工件目标差异的柔性作业车间调度问题。依据实际制造系统中存在较多的最大完工时间、平均流经时间、总拖期时间、机器总负荷、瓶颈机器负荷和生产成本性能指标,建立多目标柔性作业车间调度模型。针对柔性作业车间调度问题的特点,设计一种扩展的基于工序的编码及其主动调度的解码机制,以及初始解产生机制和有效的交叉、变异操作;针对非支配排序遗传算法(Non-dominated sorting genetic algorithm II,NSGA-II)在非支配解排序和精英选择策略方面的不足,设计一种改进的非支配排序遗传算法,应用改进的算法求解柔性作业车间调度问题得到一组Pareto解集,并运用层次分析法选出最优妥协解。通过测试基准和模拟实际生产的实例,验证提出算法的可行性和有效性。 An improved multi-objective evolutionary algorithm is proposed for solving the flexible job-shop scheduling problem(FJSP) with released time and job-oriented multi-objective. The multi-objective FJSP optimization model is put forward,in which the makespan,the mean flow-time,total tardiness,total workload of machines,workload of the bottleneck machine and production cost widely concerned in complex manufacturing system are considered. According to the characteristics of the FJSP,an extended operation-based encoding and an active scheduling decoding mechanism are presented,an initial solution generation mechanism,and two effective crossover and mutation operations are designed for the genetic algorithm. In order to ensure convergence and the diversity of the solutions,an improved non-dominated sorting genetic algorithm(NSGA-Ⅱ) is proposed. A set of Pareto solutions are obtained by the improved NSGA-Ⅱ,and the analytic hierarchy process(AHP) approach is used to select the optimal compromise solution. The approach is tested on instances taken from the literature and practical data. The computation results validate the effectiveness of the proposed algorithm.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2010年第11期156-164,共9页 Journal of Mechanical Engineering
基金 国家高技术研究发展计划(863计划 2007AA04Z107 2007AA04Z190) 国家自然科学基金(70772056) 湖北省教育厅中青年基金(Q20092303)资助项目
关键词 柔性作业车间调度 多目标进化算法 非支配排序遗传算法 层次分析法 Flexible job-shop scheduling problem Multi-objective evolutionary algorithm Non-dominated sorting genetic algorithm Ⅱ Analytical hierarchy process
  • 相关文献

参考文献10

  • 1GAREY E L,JOHNSON D S,SETHI R.The complexity of flowshop and job-shop scheduling[J].Mathematics of Operations Research,1976,1:117-129.
  • 2吴秀丽,孙树栋,杨展,翟颖妮.多目标柔性Job Shop调度问题的技术现状和发展趋势[J].计算机应用研究,2007,24(3):1-5. 被引量:19
  • 3DEB K,PRATAP A,AGARWAL S,et al.A fast and elitist multi-objective genetic algorithm:NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
  • 4CRONE D W,KNOWLES J D,OATES M J.The pareto envelope-based selection algorithm for multi-objective optimization[C] //SCHOENAUER M,DEB K,RUDOLPH G,et al.Proceedings of the Parallel Problem Solving from Nature Ⅵ Conference,Paris,France.Lecture Notes in Computer Science:Springer,2000,1 917:839-848.
  • 5KNOWLES J,CORNE D.The Pareto archived evolution strategy:a new baseline algorithm for multiobjective optimization[C] //Proceedings of the 1999 Congress on Evolutionary Computation.Piscataway,NJ:IEEE Press,1999:98-105.
  • 6ZITZLER E,THIELE L.Comparison of multiobjective evolutionary algorithms:empirical results[J].Evolutionary Computation,2000:8(2):173-195.
  • 7SRINIVAS N,DEB IC Multi-objective function optimization using non-dominated sorting genetic algorithm[J].Evolutionary Computation.1995,2(3):221-248.
  • 8张超勇,饶运清,刘向军,李培根.基于POX交叉的遗传算法求解Job-Shop调度问题[J].中国机械工程,2004,15(23):2149-2153. 被引量:115
  • 9KACEM I,HAMMADI S,BORNE P.Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems[J].IEEE Transaction Systems,Man,and Cybernetics-Part C,2002,32(1):1-13.
  • 10XIA Weijun,WU Zhiming.An effective hybrid optimization approach for multi-objective flexible job shop scheduling problems[J].Computers&Industrial Engineering,2005,48(2):409-425.

二级参考文献76

共引文献133

同被引文献1143

引证文献140

二级引证文献1008

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部