期刊文献+

基于人工神经网络的石油化工工程建设项目管理绩效评价 被引量:10

MANAGEMENT PERFORMANCE EVALUATION IN PETROCHEMICAL ENGINEERING CONSTRUCTION PROJECT BY USING ARTIFICIAL NEURAL NETWORK
在线阅读 下载PDF
导出
摘要 针对非线性多输入多输出的石油化工工程建设项目管理绩效评价问题,应用人工神经网络(ANN)构建评价模型。使用50个项目的287个学习案例数据,以10个影响因素为输入,6个指标为输出,对BP神经网络、基于遗传算法的BP神经网络、径向基函数神经网络与广义回归神经网络4类网络模型进行训练和测试。通过均方误差的比较,发现基于遗传算法的BP神经网络优于一般的BP神经网络,广义回归神经网络的测试结果优于BP神经网络,径向基函数神经网络具有最好的误差精度。2个应用示例表明,人工神经网络应用于石油化工工程建设项目管理绩效的评价是可行和有效的。 An artificial neural network model (ANN) was developed for the management performance evaluation of petrochemical engineering construction project.By using the data from 287 samples of 50 projects,in which 10 factors were as inputs and 6 indicators as outputs,training and test were given to four kinds of ANN models,BP-NN,GA-based BP-NN,radial basis function neural network (RBF-NN) and generalized regression neural network (GR-NN).By comparing the mean square errors,it is found that GA-based BP-NN is prior to BP-NN,GR-NN is prior to former,and RBF-NN has best accuracy.It is verified by the illustrations of two cases that ANN model is feasible and valid to the management performance evaluation of petrochemical engineering construction project.
出处 《石油学报(石油加工)》 EI CAS CSCD 北大核心 2010年第3期317-323,共7页 Acta Petrolei Sinica(Petroleum Processing Section)
关键词 石油化工工程建设项目 项目管理 绩效评价 人工神经网络(ANN) petrochemical engineering construction project project management performance evaluation artificial neural network (ANN)
  • 相关文献

参考文献27

  • 1王基铭.中国石化石油化工重大工程项目管理模式的创新[J].中国石化,2007(7):45-49. 被引量:20
  • 2BRYDE D J. Modeling project management performance [J]. International Journal of Quality & Reliability Management, 2003, 20(2): 229-254.
  • 3ATKINSON R. Project management: Cost, time and quality, two best guesses and a phenomenon, its time to accept other success criteria[J]. International Journal of Project Management, 1999, 17(2): 337-342.
  • 4SHENHAR A J, DVIR D, LEVI O, et al. Project success: A multidimensional strategic concept[J]. Long-Range Planning, 2001, 34: 699-725.
  • 5CHAN A P C, CHAN A P L. Key performance indicators for measuring construction success [J]. Benchmarking: An International Journal, 2004, 11 (2): 203-221.
  • 6YU A G, FLETT P D, BOWERS J A. Developing a value-centered proposal for assessing project success[J]. International Journal of Project Management, 2005, 23: 428-436.
  • 7LIPKE W, ZWIKAEL O, HENDERSON K, et al. Prediction of project outcome: The application of statistical methods to earned value management and earned schedule performance indexes[J]. International Journal of Project Management, 2009, 27(4): 400-407.
  • 8DWEIRI F T, KABLAN M M. Using fuzzy decision making for the evaluation of the project management internal efficiency[J]. Decision Support Systems, 2006, 42: 712-726.
  • 9CHANA P C, HOD C K, TAM C M. Design and build project success factors: Multivariate analysis[J]. Journal of Construction Engineering and Management, ASCE, 2001, 127(2): 93-100.
  • 10KUPRENAS J A. Member ASCE project management actions to improve design phase cost performance[J]. Journal of Management in Engineering, 2003, 19(1): 25-32.

二级参考文献6

  • 1吕林正,兰明章,吴文江.数据包络和系统重构分析在水泥生产中的应用[J].武汉理工大学学报,2004,26(7):41-45. 被引量:1
  • 2Abul Hassan H S.A Framework for Applying Concurrent Engineering Principles to the Construction Industry[D].Pennsylvania:Pennsylvania State University,2001.
  • 3Cox R F.Management's Perception of Key Performance Indicators for Construction[J].Journal of Construction Engineering and Management, 2003, 129(2):142~151.
  • 4Forsund F R,Hjalmarsson L.Calculating Scale Elasticity in DEA Models[J].Journal of the Operational Research Society,2004,55:1023~1038.
  • 5阎平凡.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2003.62-86.
  • 6王永庆.人工智能原理与方法[M].西安:西安交通大学出版社,2002..

共引文献47

同被引文献88

引证文献10

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部