期刊文献+

La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)-Ce_(0.9)Gd_(0.1)O_(1.95)高温电导弛豫的研究

High Temperature Electrical Relaxation Study of La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)-Ce_(0.9)Gd_(0.1)O_(1.95) Composite
在线阅读 下载PDF
导出
摘要 通过直流四端法研究了钙钛矿型混合导体La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)和La0.6Sr0.4Co0.2Fe0.8O3-δ-Ce0.9Gd0.1O1.95(LSCF-GDC)复合材料的高温电学性质.通过电导率测试得出单相LSCF和LSCF-GDC的小极化子导电活化能分别为Ea1=9.72kJ/mol和Ea2=10.64kJ/mol.突然改变氧分压条件进行电导弛豫测试,进而研究了二者的氧表面交换性质.测定了温度范围在600-800℃、氧分压在21-34kPa之间变化时两种样品的表面交换系数为kchem为2.87×10^-6-6.91×10^-6cm/s.讨论认为GDC对氧表面交换过程的催化作用与引入GDC对材料微结构的影响共同促进了复合材料中的氧输运过程.根据两种样品氧表面交换系数和温度的关系估算了氧表面交换过程活化能. High temperature electrical conductivity of perovskite-type mixed with ionic-electronic conductor La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF) and La0.6Sr0.4Co0.2Fe0.8O3-δ-Ce0.9Gd0.1O1.95(LSCF-GDC) composite material were studied by the DC four-terminal technique.The activation energies of pure LSCF and LSCF-GDC composite for small polaron conduction were Ea1=9.72kJ/mol and Ea2=10.64kJ/mol,respectively.Through electrical conductivity relaxation method,i.e.a continuously resistance measurement during the sudden change oxygen under partial pressure and the surface exchange property of the two samples were also investigated.In the temperature range from 600℃ to 800℃ and the oxygen partial pressure range from 21kPa to 34kPa,the oxygen surface exchange coefficients(kchem) were determined as 2.87×10^-6-6.91×10^-6cm/s.It is the catalysis effects of GDC on oxygen surface exchange process and the microstructure effect of introducing GDC that promoted the oxygen transport process of composite materials jointly.Based on the relationship of kchem and temperature,the activation energies for surface exchange process was also estimated.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2010年第6期635-640,共6页 Journal of Inorganic Materials
基金 国家高技术研究发展计划(863)(2007AA05Z139)
关键词 混合导体 电导弛豫 活化能 表面交换系数 mixed conductor electrical conductivity relaxation activation energy surface exchange coefficient
  • 相关文献

参考文献11

二级参考文献26

  • 1李艳,吕喆,王洪涛,贾莉,苏文辉.固体氧化物燃料电池多层复合阴极的制备及性能研究[J].功能材料,2005,36(10):1528-1530. 被引量:10
  • 2Teraoka Y, Zhang H M, Yamazoe N. Mater. Res. Bull., 1988, 23 (1): 51-58.
  • 3Huijmans J P P, Van Berkel F P F, Christie G M. J. Power Source, 1998, 7: 107-110.
  • 4Tsai C Y, Dixon A G, Ma Y H, et al. J. Am. Ceram. Soc., 1998, 81 (6): 1437-1444.
  • 5Chen C C, Nasrallah M M, Anderson H U. J. Electrochem. Soc., 1995, 142 (2): 491-496.
  • 6Stevenson J W, Armstrong T R, Carneim R D, et al. J. Electrochem. Soc., 1996, 143 (9): 2722-2729.
  • 7Elshof J E, Lanknorst M H R, Bouwmeester H J M. Solid State Ionics, 1997, 99: 15-22.
  • 8Tai L W, Nasrallah M M, Anderson H U, et al. Solid State Ionics, 1995, 76: 259-271.
  • 9Tai L W, Nasrallah M M, Anderson H U, et al. Solid State Ionics, 1995, 76: 273-289.
  • 10Shi L, Tin K C, Wong N B. J. Mater. Sci., 1999, 34: 3367-3374.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部