期刊文献+

基于粒子群优化的神经网络算法在辐射源特征聚类中的应用 被引量:2

Application of Neural Network Algorithm Based on Particle Swarm Optimization to Emitter Characters Clustering
在线阅读 下载PDF
导出
摘要 战场辐射源识别已成为电子侦察和雷达威胁告警的基本要素,其关键技术之一——辐射源特征聚类算法的研究也显得日益重要。在分析常用误差反传(BP)网络算法对辐射源特征聚类的不足后,提出利用基于粒子群优化的神经网络算法对多特征参数进行聚类。通过比较该优化算法和传统BP网络算法在聚类正确率和收敛速度方面的差别,验证了基于粒子群优化的BP算法在辐射源特征聚类中相对于传统BP算法的优越性,仿真结果证明了该方法具有较好的实用价值。 The emitter identification in the battlefield has become a basic element of electronic reconnaissance and radar threat warning,researching into one of its crucial techniques——the emitter characteristic clustering algorithm has become more and more important.This paper analyzes the shortages of normal error back propagation(BP)network algorithm clustering the emitter characteristic,then brings forward the method to cluster the multi-characteristic parameter by means of the neural network algorithm based on particle swarm optimization,validates the superiority of the BP algorithm based on particle swarm optimization than that of traditional BP algorithm through comparing the differences of accuracy and convergence speed of the optimization algorithm and the traditional BP algorithm,the simulation result proves that the method has preferable practical value.
出处 《舰船电子对抗》 2010年第3期66-68,95,共4页 Shipboard Electronic Countermeasure
关键词 粒子群优化 BP网络 神经网络 辐射源识别 particle swarm optimization BP network neural network emitter identification
  • 相关文献

参考文献3

  • 1Kennedy J,Ebenhart R C.Particle swarm optimization[A].Proceeding of IEEE International Conference on Neural Networks[C].Perth,Australia,1995.
  • 2Shi Y H,Rbenhart R C.A modified particle swarm optimizer[A].IEEE International Conference on Evolutionary Computation[C].Anchorage,Alaska,Piscataway,NJ:IEEE Press,1998.
  • 3魏秀业,潘宏侠.基于粒子群优化的设备状态分类器设计[J].太原理工大学学报,2006,37(6):688-690. 被引量:2

二级参考文献6

  • 1高海兵,高亮,周驰,喻道远.基于粒子群优化的神经网络训练算法研究[J].电子学报,2004,32(9):1572-1574. 被引量:96
  • 2Kennedy J,Eberhart R C.Particle swarm optimization[C].Proc IEEE Int'l Conf on Neural Networks,Ⅳ Piscataway,NJ:IEEE Service Center,1995:1 942-1 948.
  • 3Yi Da,Ge Xiurun.An improved PSO-based ANN with simulated annealing technique[J].Neurocomputing,2005,63:527-533.
  • 4Liu Yu,Qin Zheng,Xu Zenglin,et al.Feather Selection With Particle Swarms[J].LNCS,2004,3314:425-430.
  • 5Lu W Z,Fan H Y,Leung A Y T,et al.ANALYSIS OF POLLUTION LEVELS IN CENTRAL HONG KONG APPLYING NEURAL NETWORK METHOD WITH PARTICLE SWARM OPTIMIZATION[J].Environmental Monitoring and Assessment,2002,79:217-230.
  • 6丁晓伟,金世俊.基于BP网络的设备状态分类器的设计[J].现代电子技术,2003,26(17):27-28. 被引量:6

共引文献1

同被引文献27

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部