期刊文献+

A Controlled Convergence Theorem for the C-Pettis Integral

A Controlled Convergence Theorem for the C-Pettis Integral
在线阅读 下载PDF
导出
摘要 In this paper, we give the Riemann-type extensions of Dunford integral and Pettis integral, C-Dunford integral and C-Pettis integral. We discuss the relationship between the C-Pettis integral and Pettis integral, and prove a controlled convergence theorem for the C-Pettis integral. In this paper, we give the Riemann-type extensions of Dunford integral and Pettis integral, C-Dunford integral and C-Pettis integral. We discuss the relationship between the C-Pettis integral and Pettis integral, and prove a controlled convergence theorem for the C-Pettis integral.
出处 《Journal of Mathematical Research and Exposition》 CSCD 2010年第4期756-760,共5页 数学研究与评论(英文版)
基金 Supported by the Natural Science Foundation of Hubei Province (Grant No.2007ABA124) the Science Foundation of Hubei Normal University (Grant No.2007D41)
关键词 C-integral C-Pettis integral controlled convergence. C-integral C-Pettis integral controlled convergence.
  • 相关文献

参考文献10

  • 1BONGIORNO B. On the minimal solution of the problem of primitives [J]. J. Math. Anal. Appl., 2000, 251(2): 479-487.
  • 2BONGIORNO B, DI PIAZZA L, PREISS D. A constructive minimal integral which includes Lebesgue integrable functions and derivatives [J]. J. London Math. Soc. (2), 2000, 62(1): 117-126.
  • 3DI PIAZZA L. A Riemann-type minimal integral for the classical problem of primitives [J]. Rend. Istit. Mat. Univ. Trieste, 2002, 34(1-2): 143-153.
  • 4GEITZ R F. Pettis integration [J]. Proc. Amer. Math. Soc., 1981, 82(1): 81-86.
  • 5DI PIAZZA L, PREISS D. When do McShane and Pettis integrals coincide? [J]. Illinois J. Math., 2003, 47(4): 1177-1187.
  • 6YE Guoju, AN Tianqing. On Henstock-Dunford and Henstock-Pettis integrals [J]. Int. J. Math. Math. Sci., 2001, 25(7): 467-478.
  • 7LEE P Y, VYBORNY R. Integral: An Easy Approach After Kurzweil and Henstock [M]. Cambridge University Press, Cambridge, 2000.
  • 8ZHAO Dafang, YE Guoju. C-integral and Denjoy-C integral [J]. Commun. Korean Math. Soc., 2007, 22(1): 27-39.
  • 9ZHAO Dafang, YE Guoju. On C-integral of Banach-walued functions [J]. Kangweon-Kyungki J. Math., 2006, 14(2): 169-183.
  • 10ZHAO Dafang, YE Guoju. On strong C-integral of Banach-valued functions [J]. J. Chungcheong Math. Soc 2007, 20(1): 1-10.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部