期刊文献+

支持向量机在锅炉汽包水位预测中的应用研究

One support vector machine method's application in prediction of drum-water level
在线阅读 下载PDF
导出
摘要 汽包水位预测的准确性对于锅炉火力发电和供暖设备的安全运行,起着重要的作用。针对汽包水位时滞、非线性特性,在统计学习理论(SLT)和结构风险最小化(ERM)准则基础上,建立了基于支持向量机(SVM)理论的汽包水位预测模型。采用本单位供暖锅炉的实际汽包水位数据,按照不同的汽包水位日属性和历史汽包水位数据进行了样本选择,并将该预测结果同实际汽包水位进行了比较;根据供暖规模不同,分别建立了工作日和双休日预测模型。实验结果表明,所提出的预测方法具有较高的精度。 Water-level measurement system for boiler is one of the key measuring systems in power plant.And it is important to measure and predict the drum water level.As drum water level of boiler is a time-delay,time-varying and nonlinearity system,a new mathematical model according to the support vector machines(SVM) theory was brought out,which was based on the statistical learning theory(SLT) and the empirical risk minimization(ERM) principle.Adopting the actual data from the heating boiler of author affiliat-ion,the samples were chosen according to different attributes of daily water level and historical load data.The forecasted results were compared with actual boiler water lev-el according to the scale of heating.The results show that the presented prediction method is more accurate.
作者 安鹏 赵林涛
出处 《机电工程》 CAS 2010年第7期29-32,共4页 Journal of Mechanical & Electrical Engineering
关键词 支持向量机 汽包水位 预测 统计学习理论 结构风险最小化 support vector machine(SVM) drum boiler water level prediction statistical learning theory(SLT) empirical risk minimiza-tion(ERM)
  • 相关文献

参考文献13

二级参考文献42

  • 1谢松云,张海军,赵海涛,张振中,杨金孝.基于SVM的脑功能分类与识别方法研究[J].中国医学影像技术,2007,23(1):125-128. 被引量:8
  • 2王水骥,自动化学报,1994年,20卷,1期,312页
  • 3王宁,智能控制与智能自动化.上,1993年
  • 4孙伟,博士学位论文,1993年
  • 5王宁,中国自动化学会第三届全国学术年会论文集,1991年
  • 6李遵基.热工自动控制系统(第一版)[M].北京:中国电力出版社,2001..
  • 7Lihui Zhou, Pu Han, Daogang Peng et al. The method and application of the internal model control based on online self-learning neural networks[C]. Proceedings of the 2002 International Conference on Control and Automation, Xiamen, China, Jun. 2002. ISBN:0-7803-7413-4:559-563.
  • 8Graaf J M, Meester-Broertjes H A, Bruggeman W A, et al. Sustainable technological development for urban-water cycles[J]. Water Science and Technology, 1997,35(10): 213-220.
  • 9Zhou S L, McMahon T A, Walton A, et al. Forecasting operational demand for an urban water supply zone[J]. Journal of Hydrology, 2002,259(3): 189-202.
  • 10El-Keib A, Ma X, Ma H. Advancement of statistical based modeling techniques for short-term load forecasting[J]. Electric Power Systems Research, 1995,35(1):51-58.

共引文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部