期刊文献+

基于AR模型和支持向量机的故障诊断法 被引量:14

Fault Diagnosis Based on AR Model and Support Vector Machine
在线阅读 下载PDF
导出
摘要 提出了一种基于时间序列AR模型和支持向量机的故障诊断方法。首先利用AR模型对振动信号进行建模,然后将AR模型自回归系数组成的特征向量输入到支持向量机,最后支持向量机完成对不同工况的分类识别。测试系统采用LabVIEW虚拟仪器构建,并通过计算机自动完成测试和分析。实验结果表明:这种基于时间序列AR模型和支持向量机的故障诊断方法是可行的。 In this paper,a new fault diagnosis method based on time series autoregressive(AR) model and support vector machine has been put forward.First,the AR model of the relief valve body vibration signals is established.The autoregressive coefficients are regarded as the feature vectors,and are used as an input of the support vector machine.Then,the normal state and artificial faults are classified by support vector machine.The experiments and diagnosis process based on virtual instruments LabVIEW are automatically controlled by computer.The results and analysis of the experiments indicate that this new fault diagnosis method based on time series autoregressive model and support vector machine is feasible and effective.
出处 《机械科学与技术》 CSCD 北大核心 2010年第7期972-975,980,共5页 Mechanical Science and Technology for Aerospace Engineering
基金 福建省重大专项专题项目(2008HZ0201-3) 国家自然科学基金项目(50975098)资助
关键词 溢流阀 故障诊断 AR模型 支持向量机 relief valve fault diagnosis autoregressive(AR) model support vector machine
  • 相关文献

参考文献9

  • 1闻新 周露 王丹力 熊晓英.MATLAB神经网络应用设计[M].北京:科学出版社,2002..
  • 2Matthias P, Stefan O, Manfred G. Support vector approaches for engine knock detection [A ]. Neural Networks. Internalional Joint Conference on Neural Network[C], Washington:IEEE- Press, 1999:969-974.
  • 3刘天雄,郑明刚,陈兆能,朱继梅,华宏星.AR模型和分形几何在设备状态监测中的应用研究[J].机械强度,2001,23(1):61-65. 被引量:27
  • 4李良敏,屈梁生.基于遗传编程和支持向量机的故障诊断模型[J].西安交通大学学报,2004,38(3):239-242. 被引量:19
  • 5Corinna C, Vapnik V. Support-vector network [ J]. Machine Learning, 1995,20:273 -297.
  • 6Steve R G. Support Vector Machine for Classification and Regression[ R]. Technical Report, Southampton: University of Southampton, 1998 : 1 -28.
  • 7Walsh D, Ddaney P A. Detection of transient signals in mulfipath environments[J]. IEEE Journal of Oceanic Engineertug, 1995,20(2) :133 - 138.
  • 8Steve R Gunn. Support VectorMachines for Classication and Regression[R]. Southampton:University of Southampton, 1998 : 1 ~ 28.
  • 9彭志君,黄宜坚.基于AR双谱的溢流阀故障诊断[J].机械科学与技术,2007,26(7):908-912. 被引量:9

二级参考文献22

  • 1刘树林,唐友福,钟力,孟庆武.活塞压缩机气阀故障的高阶谱特征研究[J].流体机械,2004,32(9):30-32. 被引量:4
  • 2赵凯华.从单摆到混沌[J].现代物理知识,1993,5(6):22-24. 被引量:34
  • 3孙瑞祥.[D].西安:西安交通大学机械工程学院,1999.
  • 4杨叔子 吴雅.时间序列分析的工程应用[M].武汉:华中理工大学出版社,1994..
  • 5张贤达.时间序列分析[M].北京:清华大学出版社,1999.11-13.
  • 6Nikias C L,Mendel J M.Signal processing with higher-order Spectra[J].IEEE Signal Processing Magazine,1993:10-37
  • 7Walsh D,Delaney P A.Detection of transient signals in multipathenvironments[J].IEEE Journal of Oceamc Engineering,1995,20(2):133-138
  • 8Rauge J A,Pike C M,Sullivan E J.Active sonar detection in multipath:a new bispectral analysis approach[J].Circuits Systems Signal Process,1994,13(4):455-466
  • 9Giannakis G,et al.Cumulant-based order determination of nonGaussian ARMA models[J].IEEE Trans.on ASSP,1990,38(8)
  • 10Gardner W A.Statistical Spectral Analysis:A Non-probabilistic Heory[M].Prentice-Hall Englewood cliffs,NJ,1987

共引文献129

同被引文献116

引证文献14

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部