期刊文献+

有限差分异质多尺度方法求解非饱和土壤水流问题的计算效率(Ⅱ):数值实验 被引量:1

Computational efficiency of the finite difference heterogeneous multiscale method for unsaturated flow problems in random porous media Ⅱ:Numerical simulation
在线阅读 下载PDF
导出
摘要 以控制体尺度取粗网格尺度的一半为例,探讨有限差分异质多尺度方法(FDHMM)求解非饱和土壤水流问题的计算效率。考虑两种不同的本构关系,把这种数值方法应用于包括不同的土壤质地和边界条件的几个测试例子中。在应用FDHMM模拟非均质非饱和土壤中的水流问题时,对于局部微观模型的求解,既考虑Dirichlet边界也考虑周期边界。数值实验表明:在仅使用一半微观信息的情况下,FDHMM能够有效地模拟特定土壤中的非稳定非饱和水流问题,单胞问题使用Dirichlet边界条件的FDHMM能大幅度地节省计算费用。数值实验还表明:FDHMM能够获得准确的全局质量守恒,且是一个全局收敛的算法。 For the case that the cell size equals a half of the coarse mesh size,the efficiency of the finite difference heterogeneous muhiscale method (FDHMM) for transient unsaturated water flow problems in random porous media was discussed. Considering two different constitutive relationships, this method was applied to several test examples with different soil textures and boundary conditions. Both the Dirichlet and the periodic bounday conditions were considered for solving the local microscopic model when the water flow in heterogeneous unsaturated soils was simulated by FDHMM. The numerical experiments demonstrated that, for the case that only a half of the information of the whole microstructure was used, FDHMM could effectively simulate the transient unsaturated water flow in the specific soils, FDHMM with the Dirichlet boundary condition for cell problem could offer remarkable saving in computational cost. The numerical experiments also demonstrated that FDHMM could achieve accurate global mass balance and was a globally convergent algorithm.
作者 陈福来 任理
出处 《水利学报》 EI CSCD 北大核心 2010年第7期771-777,共7页 Journal of Hydraulic Engineering
基金 国家重点基础研究发展规划项目(2006CB403406) 国家自然科学基金项目(50779064)
关键词 多孔介质 非饱和水流 有限差分异质多尺度方法 随机场 数值模拟 porous media unsaturated flow finite difference heterogeneous multiscale method random field numerical simulation
  • 相关文献

参考文献8

  • 1陈福来,任理.有限差分异质多尺度方法求解非饱和土壤水流问题的计算效率(Ⅰ):数值方法[J].水利学报,2010,40(6):640-645. 被引量:2
  • 2Freeze R A. A stochastic conceptual analysis of one-dimensional groundwater flow in non-uniform homogeneous media [ J ] . Water Resources Research, 1975, 11 (5) : 725-741.
  • 3Gelhar L W. Stochastic subsurface hydrology from theory to applications [J] . Water Resources Research, 1986, 22(9) : 135-145 .
  • 4Russo D, Bouton M . Statistical analysis of spatial variability in unsaturated parameters [J] . Water Resources Research, 1992, 28(7) : 1911-1925 .
  • 5Mantoglou A, Wilson J L . The turning bands method for simulation of random fields using line generation by a spectral method[J] . Water Resources Research, 1982, 18(5): 1379-1394.
  • 6Soil Survey Staff Division Soil Survey Manual[M] . USDA Handb., vol.18 . Washington, Dc.. U.S.Gov. Print Omce. 1993.
  • 7Vsrado N, Braud I, Ross P J, et al. Assessment of an efficient nmnerical solution of the 1D Richards' equation on bare soil[J] . Journal of Hydrology, 2006, 323: 244-257.
  • 8Celia M A, Bouloutas E T, Zarba R L. A general mass-conservative numerical for the unsaturated flow equation [J]. Water Resources Research, 1990, 26(7):1483-1496.

二级参考文献14

  • 1Efendiev Y, Pankov A. Numerical homogenization of nonlinear random parabolic operators[ J]. SIAM Multiscale Modeling Simulation, 2004, 2 (2) : 237 - 268.
  • 2He X, Ren L. A muhiscale finite element linearization scheme for the unsaturated flow problems in heterogeneous porous media[ J]. Water Resources Research, 2006, 42, W08417, doi: 10. 1029/2006WR004905.
  • 3Efendiev Y, Hou T Y, Ginting V. Multiscale finite element methods for nonlinear problems and their applications [ J ]. Communications in Mathematical Sciences, 2004, 2 (4) : 553 - 589.
  • 4E W, Ming P B, Zhang P W. Analysis of the heterogeneous multiscale method for elliptic homogenization problems [J]. Journal of the American Mathematical Society, 2005, 18( 1 ) : 121 -156.
  • 5Yue X, E W. Numerical methods for multiscale transport equations and application to two-phase porous media flow [ J]. Journal of Computational Physics, 2005, 210 : 656 - 675.
  • 6Chen F, Ren L. Application of the finite difference heterogeneous muhiscale method to the Riehards' equation [ J]. Water Resources Research, 2008, 44, W07413, doi: 10. 1029/2007WR006275.
  • 7Abdulle A, E W. Finite difference heterogeneous multi-scale method for homogenization problems[J]. Journal of Computational Physics, 2003, 191:18-39.
  • 8Celia M A, Bouloutas E T, Zarba R L. A general mass-conservative numerical solution for the unsaturated flow equation [ J ]. Water Resources Research, 1990, 26 (7) : 1483 - 1496.
  • 9Allen M B, Murphy C. A finite element collocation method for variably saturated flows in porous media [ J]. Numerical Methods for Partial Differential Equations, 1985, 3:229 -239.
  • 10van Genuchten M T. A closed - form equation for predicting the hydraulic conductivity of unsaturated soils [ J]. Soil Science Society of America Journal, 1980, 44 : 892 - 898.

共引文献1

同被引文献7

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部