期刊文献+

复数FIR滤波器椭圆误差约束最小二乘设计 被引量:2

Least square design of complex finite impulse response filter with elliptic error constraint
在线阅读 下载PDF
导出
摘要 针对非线性相位有限冲击响应(FIR)滤波器的优化设计问题,提出一种频率响应误差和相位误差约束的最小二乘方法,既能独立控制幅值误差和相位误差,又能形成凸的约束区域.采用S形相位误差上界函数,不仅将相位误差控制在给定范围,而且有效减小了滤波器的群延迟误差,但增大了幅值逼近误差.为了减小幅值逼近误差,应用椭圆形的复数误差约束来代替通带上的圆形频率响应误差约束,研究基于椭圆复数误差约束及S形相位误差上界函数的复系数FIR滤波器加权最小二乘设计.仿真结果表明,应用椭圆形的复数误差约束能够有效减小滤波器的幅值逼近误差. A frequency response error and phase error constrained least square method was proposed for the optimal design of nonlinear phase finite impulse response(FIR) filter.The method can control the magnitude error and the phase error independently,and results in the convex feasible domain.By using the sigmoid phase-error upper-bound function,the phase error was controlled within the specified value,and the group-delay error was greatly reduced,but the magnitude error generally increased.The elliptic complex-error constraints were introduced to constrain the complex frequency response of the filter in order to decrease the magnitude error.Then the weighted least square design of the complex FIR filter was considered with the elliptic complex-error canstraints and the sigmoid phase-error upper bound.Simulation results show that the magnitude error can be effectively reduced.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2010年第7期1338-1342,共5页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(60974102) 国家“973”重点基础研究发展规划资助项目(2009CB320600) 浙江省自然科学基金资助项目(Y1090109)
关键词 复系数有限冲击响应滤波器 频率响应误差 幅值误差 相位误差 群延迟误差 complex finite impulse response filter frequency response error magnitude error phase error group-delay error
  • 相关文献

参考文献11

  • 1LANG M C. Constrained design of digital filters with arbitrary magnitude and phase responses[D]. Vienna: Vienna University of Technology, 1999.
  • 2LU W S. A unified approach for the design of 2-D digital filters via semidefinite programming [J]. IEEE Transactions on Circuits and Systems I, 2002, 49 (6): 814 - 826.
  • 3LEE W R, CACCETTA L, TEO K L, et al. Optimal design of complex FIR filters with arbitrary magnitude and group delay response [J]. IEEE Transactions on Signal Processing, 2006, 54(5): 1617- 1628.
  • 4MASNADI-SHIRAZI M A, ZOLLANVAR1 A. Complex digital Laguerre filter design with weighted least square error subject to magnitude and phase constraints [J]. Signal Processing, 2008, 88(4) : 796 - 810.
  • 5LIN Z P, LIU Y Z. Design of complex FIR filters with reduced group delay error using semidefinite program- ming [J]. IEEE Signal Processing Letters, 2006, 13(9) : 529 - 532.
  • 6LIU Y Z, LIN Z P. Optimal design of frequencyresponse masking filters with reduced group delays [J]. IEEE Transactions on Circuits and Systems I, 2008, 55(6): 1560-1570.
  • 7SCHULIST M. FIR filter design with additional constraints using complex Chebyshev approximation [J]. Signal Processing, 1993, 33(1): 111 - 119.
  • 8SULLIVAN J L, ADAMS J W. A new nonlinear optimization algorithm for asymmetric FIR digital filters [J]. IEEE International Symposium on Circuits and Systems, 1994, 2(5): 541- 544.
  • 9LAI X P. Optimal design of nonlinear-phase FIR filters with prescribed phase error [J]. IEEE Transactions on Signal Processing, 2009, 57(9): 3399- 3410.
  • 10PREUSS K. On the design of FIR filters by complex Chebyshev approximation [J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(5) : 702 - 712.

同被引文献17

  • 1鄢社锋,马远良.二阶锥规划方法对于时空域滤波器的优化设计与验证[J].中国科学(E辑),2006,36(2):153-171. 被引量:34
  • 2M Burgos-Garcia,C Castillo,S Llorente,J C Crespo.Digital on-line compensation of errors induced by linear distortion in broadband LFM radars. Electronics Letters . 2003
  • 3M A Masnadi-Shirazi,A Zollanvari.Complex digital Laguerre filter design with weighted least square error subject to magnitude and phase constraints. Signal Processing . 2008
  • 4Zhang X P,,Desai M D,Peng Y N.Orthogonalcomplex filter banks and wavelets:some propertiesand design. IEEE Transactions on Signal Processing . 1999
  • 5Perry R,,Bull D R,Nix A.Efficient adaptive complex filtering algorithm with application to channel equalization. IEE Proc.of Vision,Image and Signal Processing . 1999
  • 6M R Fisher,S Minin,S L Chuang.Tunable optical group delay in an active waveguide semiconductor resonator. IEEE J.Select.TopicsQuantum Electron . 2005
  • 7Lang,M.,Bamberger,J.Nonlinear phase FIR filter design according to the L2 norm with constraints for the complex error. Signal Processing . 1994
  • 8Lang M C.Constrained Least Square Design of FIR Filters with Arbitrary Magnitude and Phase Responses. IEEE Internal Symposium on Circuits and System . 1997
  • 9BOYD S,VANDENGERGHE L.Convex Optimization. . 2009
  • 10W. R. Lee,,L. Caccetta,,K. L. Teo,,V Rehbock.A Unified Approach to Multistage Frequency-Response Masking Filter Design Using the WLS Technique. IEEE Transactions on Signal Processing . 2006

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部