期刊文献+

基于矩阵重构算法的宽带相干信号方位估计 被引量:1

Wideband Coherent Signals Direction-of-Arrival Estimation based on Matrix Reconstruction Algorithm
在线阅读 下载PDF
导出
摘要 根据空间平滑理论准则,提出了一种基于阵列接收数据矩阵重构的宽带相干源方位(DOA)估计算法。将宽带阵列数据分解为若干窄带数据,对每一子带进行空间平滑处理后的数据矩阵重构;再由构造的聚焦矩阵对其进行处理,最终得到平均的阵列协方差矩阵。由子空间方法处理得到信号的方向估计,仿真实验证明了该方法的有效性。 According to the theory of spatial smoothing, a new algorithm which is based on data matrix reconstruction for Direction-Of-Arrival (DOA) estimation in the presence of wideband coherent signals is presented. Dividing broadband data into a number of narrow-band data, then reconstruct each sub-band data matrix after dealing them with spatial smoothing. Finally, get the average array covariance matrix through the processing of focusing matrix, also estimate the direction of signals by the signal-subspace method. Simulation experiments prove the effectiveness of the method.
出处 《火力与指挥控制》 CSCD 北大核心 2010年第7期50-52,共3页 Fire Control & Command Control
基金 河南省自然科学基金资助项目(0411010400)
关键词 宽带相干信号 空间平滑 矩阵重构 聚焦矩阵 方位估计 wideband coherent signal spatial smoothing matrix reconstruction focusing matrix direction of arrival estimation
  • 相关文献

参考文献5

  • 1Wang H,Kaveh M.Coherent Signal-subspace Processing for the Detection and Estimation of Angles of Arrival of Multiple Wideband Sources[J].IEEE Trans.AP,1985,33(4):823-831.
  • 2Hung H,Kaveh M.Focusing Matrices for Coherent Signal-subspace Processing[J].IEEE Trans.AP1988,36(8):1272-1281.
  • 3冯西安,黄建国.水下目标宽带高分辨方位估计方法的性能研究[J].系统仿真学报,2005,17(10):2352-2354. 被引量:7
  • 4Pillai S U,Kwon B H.Forward/backward SpatialSmoothing Techniques for Coherent Signal Identification[J].IEEE Trans.AP,1989,37(1):8-15.
  • 5陈辉,王永良.基于空间平滑的矩阵分解算法[J].信号处理,2002,18(4):324-327. 被引量:10

二级参考文献7

  • 1Hung H, Kaveh M. Focusing Matrices for Coherent Signal-Subspace Processing [J]. IEEE Trans. on ASSP, 1988, 36(8): 1272-1281.
  • 2Hung H, Mao C. Robust Coherent Signal-Subspace Processing for Direction-of-Arrival Estimation of Wideband Sources [A].IEE Proc.Radar, Sonar and Navigation [C]. 1994. 141 (5): 256-262.
  • 3Kaveh M, Barabell A J. The Statistical Performance of the MUSIC and the Minimum-norm Algorithms in Resolving Plane Waves in Noise [J].IEEE Trans. on ASSP, 1986, 34(2): 331-341.
  • 4Xu X L, Buckley K M. Bias and Variance Analysis of MUSIC Location Estimates [A]. IEEE Proc. ASSP [C]. 1990, 332-336.
  • 5Vaccaro R J. The Past, Present, and the Future of Underwater Acoustic Signal Processing [J]. IEEE Signal Processing Magazine, 1998, 15(4):21-51.
  • 6Wang H, Kaveh M. Coherent Signal-Subspace Processing for the Detection and Estimation of Angles of Arrival of Multiple Wide-Band Sources [J]. IEEE Trans. ASSP, 1985, 33(4): 823-831.
  • 7叶中付.空间平滑差分方法[J].通信学报,1997,18(9):1-7. 被引量:17

共引文献15

同被引文献10

  • 1丁玉美,高西全.数字信号处理[M].2版.西安:西安电子科技大学出版社,2000.
  • 2MENDOZA-MONTOYA F, COVARRUBIAS-ROSALES D H, LO- PEZ-MIRANDA C A. DOA estimation in mobile communication system using subspace tracking methods[J]. IEEE Latin America Transactions, 2008,6 ( 2 ) : 123 - 129.
  • 3SCHMIDT R O. Multiple emitter location and signal parameter esti- mation[J].IEEE Trans. Antennas and Propagation, 1986, 34 (3) : 276-280.
  • 4WANG H, KAVEH M. Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wideband sources[J]. IEEE Trans. Acoustics, Speech and Signal Processing, 1985,33(4) : 823-831.
  • 5HUNG H, KAVEH M. Focusing matrices for coherent signal-sub- space processing[J]. IEEE Trans. Speech, and Signal Processing, 1988,36(8) : 1272-1281.
  • 6武逸枫,丛玉良,何斌.基于Toeplitz矩阵重构的相干信源波达方向估计研究[J].光电与控制,2010,17(3):60-63.
  • 7余品能,王煜.Toeplitz矩阵相乘的一种新快速算法[J].数值计算与计算机应用,2008,29(3):207-216. 被引量:2
  • 8杨霁琳,秦克云,裴峥.不完备决策表中基于相似关系的属性约简[J].计算机工程,2010,36(20):10-12. 被引量:10
  • 9隋伟伟,景小荣,周围,张永杰.基于时间平滑和Toeplitz矩阵重构的复相干信号DoA估计[J].计算机应用,2011,31(12):3233-3235. 被引量:4
  • 10张波,罗丰,张林让,黄庆东,刘高高.基于Toeplitz矩阵初值的协方差估计方法[J].电子科技大学学报,2011,40(6):865-868. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部