期刊文献+

赋范线性空间中渐近伪压缩映象不动点迭代逼近的充要条件 被引量:3

Necessary and Sufficient Conditions for Iterative Approximations of Fixed Points for Asymptotically Pseudo-contractive Mappings in Normed Linear Spaces
在线阅读 下载PDF
导出
摘要 设X是赋范线性空间,K是X的非空闭凸子集,设T:K→k是一致L-Lipschitz的渐近伪压缩映象,在迭代参数{αn}和{βn}的适当假设下,给出了由修改了的具有误差的Ishikawa和Mann迭代程序生成的序列{xn}强收敛于T的不动点的充分必要条件,所得结果取消了谷和堵中{xn}有界的假设,并且推广了已知的一些结果。 Let X be a normed linear space,K be a nonempty clood convex subset of X and T:K→K be a uniformly L-Lipschitz asymptotically pseudo-contractive mapping.Under some suitable assumptions on the iterative parameters {αn} and {βn},we give some necessary and sufficient conditions for strongl convergence of modified Ishikawa iterative sequence with errors of fixed points for asymptotically pseudo-contractive mapping T.The condition of boundedness of {xn} is Gu and Du's paper is dropped,and some recent results in the literature is generalized.
机构地区 南昌大学数学系
出处 《南昌大学学报(理科版)》 CAS 北大核心 2010年第3期210-213,共4页 Journal of Nanchang University(Natural Science)
基金 江西省自然科学基金资助项目(2009GZS0021 2007GQS2063 0411036) 江西省教育厅高等学校教学改革研究立项重点课题(JXJG-08-1-11) 南昌大学校基金资助项目(Z04006)
关键词 渐近非扩张映象 渐近伪压缩映象 修改的具误差的Ishikawa迭代序列 不动点 asymptotically nonexpansive mapping asymptotically pseudo-contractive mapping modified Ishikawa iterative sequence with errors fixed point
  • 相关文献

参考文献6

二级参考文献28

  • 1胡良根,刘理蔚.Banach空间中p-严格渐近伪压缩映象的收敛性问题[J].应用泛函分析学报,2004,6(2):132-139. 被引量:10
  • 2肖建中,朱杏华.关于渐近拟非扩张算子不动点迭代逼近的注记[J].应用数学学报,2004,27(4):608-616. 被引量:11
  • 3唐玉超,刘理蔚.增生算子零点算法[J].南昌大学学报(理科版),2005,29(5):419-421. 被引量:1
  • 4Liu Q H, Xue L X. Convergence Theorems of herative Sequences for Asymptotically Nonexpansive Mapping in a Uniformly Convex Banach Space [ J ]. J Math Res Exp, 2000,20(3) :331 -336.
  • 5Goebel K, Kirk W A. A Fixed Point Theorem for Asymptotically Nonexpansive Mapping [ J ]. Proc Amer Math Soc ,1972,35( 1 ) :171 - 174.
  • 6Schu Ju rgen. Iterative Construction of Fixed Points of As- ymptotically Nonexpansive Mapping[J]. J Math Anal Appl, 1991,158:407 - 413.
  • 7Schu J. Weak and Strong Convergence to Fixed Points of Asymptotically Nonexpansive Mappings [ J ]. Bull Austral Math Soc, 1991,43 : 153 - 159.
  • 8Tan K K, Xu H K. Approximating Fixed Points of Nonexpansive Mappings by the Ishikawa Iterative Process [ J ]. J Math Anal Appl, 1993,178:301 - 308.
  • 9Rhoades B E. Comments on two fixed point iteration methods[J]. J Math Anal Appl, 1976, 56: 741--750.
  • 10Goebel K, Kirk W A. A fixed point theorem for asymptotically nonexpansive mappings[J]. Proc Amer Math Soc, 1972, 35(1): 171--174.

共引文献72

同被引文献25

  • 1BRUCH R E Jr.A Strong Convergant Iterative Solu-tion of 0∈U(x)for a Maximal Monotone Operator inHilbert Spaces[J].Math Anal Appl,1974,48:114-126.
  • 2ISHIKAWA S.Fixed Points by a New Iteration Meth-od[J].Proc Amer Math Soc,1974,44:147-150.
  • 3RHOADES B E,Stefan M Soltuz.On the Equivalenceof Mann and Ishikawa Iteration Methods[J].Int JMath Sci,2003:451-459.
  • 4RHOADES B E,Stefan M Soltuz.The Equivalence ofMann Iteration and Ishikawa Iteration for Non-Lipschi-tzian Operators[J].Int J Math Sci,2003:2645-2651.
  • 5RHOADES B E,Stefan M Soltuz.The Equivalence Be-tween the Convergence of Ishikawa and Mann Itera-tions for an Asymptotically Noexpansive in the Inter-mediate Sense and Strongly Successively Pseudocon-tractive Maps[J].Math Anal Appl,2004,189:266-278.
  • 6ZHEN yu Huang,FAN wei Bu.The Equivalence Be-tween the Convergence of Ishikawa and Mann Itera-tions with Errors for Strongly Successively Pseudocon-tractive Mappings without Lipschitzian Assumption[J].Math Anal Appl,2007,325:586-594.
  • 7Zhenyu Huang.Equivalence Theorems of the Conver-gence Between Ishikawa and Mann Iterations with Er-rors for Generalized Strongly Successively Pseu-Docon-tractive Mappings Without Lipschitzian Assumptions[J].Math Anal Appl,2007,329:935-947.
  • 8CHANG S S.On Chidume’s Open Questions and Ap-proximate Solutions of Multivalued Strongly AccretiveMapping Equations in Banach Spaces[J].J Math AnalAppl,1999,216:94-111.
  • 9Weng X.Fixed Point Iteration for Local Strictly Pseud-ocontractive Mapping[J].Proc Amer Math Soc,1991,113:727-731.
  • 10ZEQING Liu Shin Min Kang.Convergence Theoremsforφ-strongly Accretive andφ-Hemicontractive Opera-tors[J].Math Anal And Appl,2001,253:35-49.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部