摘要
设X是赋范线性空间,K是X的非空闭凸子集,设T:K→k是一致L-Lipschitz的渐近伪压缩映象,在迭代参数{αn}和{βn}的适当假设下,给出了由修改了的具有误差的Ishikawa和Mann迭代程序生成的序列{xn}强收敛于T的不动点的充分必要条件,所得结果取消了谷和堵中{xn}有界的假设,并且推广了已知的一些结果。
Let X be a normed linear space,K be a nonempty clood convex subset of X and T:K→K be a uniformly L-Lipschitz asymptotically pseudo-contractive mapping.Under some suitable assumptions on the iterative parameters {αn} and {βn},we give some necessary and sufficient conditions for strongl convergence of modified Ishikawa iterative sequence with errors of fixed points for asymptotically pseudo-contractive mapping T.The condition of boundedness of {xn} is Gu and Du's paper is dropped,and some recent results in the literature is generalized.
出处
《南昌大学学报(理科版)》
CAS
北大核心
2010年第3期210-213,共4页
Journal of Nanchang University(Natural Science)
基金
江西省自然科学基金资助项目(2009GZS0021
2007GQS2063
0411036)
江西省教育厅高等学校教学改革研究立项重点课题(JXJG-08-1-11)
南昌大学校基金资助项目(Z04006)
关键词
渐近非扩张映象
渐近伪压缩映象
修改的具误差的Ishikawa迭代序列
不动点
asymptotically nonexpansive mapping
asymptotically pseudo-contractive mapping
modified Ishikawa iterative sequence with errors
fixed point