期刊文献+

基于ROC曲线寻优的支持向量机性能研究 被引量:9

Performance Evaluation with Optimization Strategy for Support Vector Machine Based on ROC Curve
在线阅读 下载PDF
导出
摘要 支持向量机在小样本模式识别领域具有优势,但其性能评估及核参数、正则化参数的选择尚未有标准算法。将受试者操作特性曲线(Receiver Operating Characteristic,ROC)引入支持向量机分类性能分析和建模参数优化问题。在核参数及正则化参数所构成的二维空间中,调整模型参数阈值描绘ROC曲线,通过比较不同分类器ROC曲线下面积实现模型的性能分析,研究了基于ROC曲线最佳工作点的模型优化问题。工程实例表明,ROC曲线下面积有效地量化了模型的识别性能,并给出了一定寻优范围内的模型参数最优点,可以在SVM模型参数优化问题中推广应用。 Support vector machine (SVM) has become a popular tool in the area of pattern recognition,and parameters selection for SVM is an important issue to make it practically useful. In this paper, we introduced Receiver Operating Characteristic Curve into the performance evaluation and model optimization of SVM within the kernel parameters s and penalty factor c. Area under ROC curve was applied to the model evaluation,and model optimization was performed by seeking of optimal operating point of ROC. Pattern recognition experiment with UCI dataset shows that ROC curve is an effective approach for performance evaluation and optimization of SVM.
出处 《计算机科学》 CSCD 北大核心 2010年第8期240-242,共3页 Computer Science
基金 国家高技术研究发展计划(863计划)(2006AA12A108) 国家自然科学基金(60879008)资助
关键词 模式识别 支持向量机 参数优化 受试者操作特性曲线 Pattern recognition, Support vector machine, Parameter optimize, ROC curve
  • 相关文献

参考文献12

  • 1许建华,张学工,李衍达.支持向量机的新发展[J].控制与决策,2004,19(5):481-484. 被引量:132
  • 2杨丽明.基于SVM理论的一种新的数据分类方法[J].数学的实践与认识,2003,33(12):61-65. 被引量:25
  • 3Vapnik V N.An Overview of Statistical Learning Theory[J].IEEE Transactions on Neural Networks,1999,10(5):988-999.
  • 4Cherkassky V,Ma Yunqian.Practical selection of SVM parameters and noise estimation for SVM regression[J].Neural Networks,2004,17(1):113-126.
  • 5Son H K,Yun M J,Jeon T J,et al.ROC analysis of ordered subset expectation maximization and filtered back projection technique for FDG-PET in lung cancer[J].IEEE transactions on Nuclear Science,2003,50(1):37-41.
  • 6Hand D J,Till R J.A simple generalization of the area under the ROC curve for multiple class classification problems[J].Machine learning,2001,45(2):171-186.
  • 7Bradley A P.The use of the area under the ROC curve in the evaluation of machine learning algorithms[J].Pattern Recognition,1997,30:1145-1159.
  • 8Robert J G,et al.Determination and interpretation of the Optimal Operating Point for ROC Curves derived through generalized linear models[J].Understanding Statistics,2003,2(4):219-242.
  • 9Riddle D L,Stratford P W.Interpreting validity indexed for diag-nostic tests:An illustration using Berg Balance Test[J].Physical Therapy,1999,7(9):939-948.
  • 10Peng M S,So T S H.Logistic regression analysis and reporting:A primer[J].Understanding Statistics,2002,1(3):1-7.

二级参考文献28

  • 1[1]Boser B E, Guyon I M, Vapnik V N. A training algorithm for optimal margin classifiers[A]. The 5th Annual ACM Workshop on COLT [C]. Pittsburgh:ACM Press, 1992. 144-152.
  • 2[2]Cortes C, Vapnik V N. Support vector networks[J].Machine Learning, 1995, 20(3): 273-297.
  • 3[3]Drucker H, Burges C J C, Kaufman L, et al. Support vector regression machines [A]. Advances in Neural Information Processing Systems[C]. Cambridge: MIT Press, 1997. 155-161.
  • 4[4]Vapnik V N, Golowich S, Smola A. Support vector method for function approximation, regression estimation and signal processing [A]. Advances in Neural Information Processing Systems [ C ].Cambridge: MIT Press, 1997. 281-287.
  • 5[5]Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1995.
  • 6[6]Vapnik V N. Statistical Learning Theory [M]. New York: Wiley, 1998.
  • 7[7]Vapnik V N. The Nature of Statistical Learning Theory [M]. 2nd edition. New York: SpringerVerlag, 1999.
  • 8[8]Platt J. Fast training of support vector machines using sequential minimal optimization [ A ]. Advances in Kernel Methods - Support Vector Learning [C].Cambridge: MIT Press, 1999. 185-208.
  • 9[9]Suykens J A K, Vandewalle J. Least squares support vector machines [J]. Neural Processing Letters, 1999, 9(3): 293-300.
  • 10[10]Scholkopf B, Smola A J, Williamson R C, et al. New support vector algorithms [J]. Neural Computation,2000, 12(5) :1207-1245.

共引文献155

同被引文献88

  • 1蔡晓龙,穆向阳,高炜欣,魏巍.基于PSO-SVM的焊缝缺陷X射线检测[J].焊接技术,2013,42(10):57-60. 被引量:6
  • 2蹇清平,艾志久,张勇,杨赟达.基于支持向量机的油管内外表面缺陷识别方法[J].机械科学与技术,2015,34(1):118-123. 被引量:9
  • 3林励,陈志霞,袁旭江,李向明.两种化橘红的质量鉴别[J].广州中医药大学学报,2004,21(4):308-312. 被引量:19
  • 4杨煦,张跃.基于支持向量机的心律失常识别方法[J].计算机工程与设计,2007,28(18):4442-4445. 被引量:6
  • 5邓聚龙.灰理论基础[M]武汉:华中科技大学出版社,2002.
  • 6国家药典委员会.中华人民共和国药典:一部[M]北京:中国医药科技出版社,201069.
  • 7Wei H;Lin L;Zhang H L.Institute of Electrical and Electronics Engineers[A]重庆,2012292.
  • 8Dario D,Salvucci Hiren M,Mandalia. Lane-change detection using a computational driver model[J].Journal of the Human Factors and Ergonomics Society,2007,(03):532-542.
  • 9WU Bingfei,CHEN Weihsin,CHANG Chaiwei. A new vehicle detection with distance estimation for lane change warning systems[A].Turkey,2007.698-703.
  • 10KIM V N. MicroRNA biogenesis:coordinated cropping and dicing [ J ]. Nature Reviews Molecular Cell Biology,2005,6 ( 5 ) : 376 - 385.

引证文献9

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部