期刊文献+

改进BP神经网络的城区中长期电力负荷预测 被引量:3

Middle-long predicting of electric power load for urban plans by improved BP neural network
在线阅读 下载PDF
导出
摘要 为了克服和改进BP算法的不足,本文对BP初始权值的选取进行改进,提出一种基于模拟退火的BP神经网络学习算法,以南昌市的电力负荷做实证,与传统BP神经网络比较,验证了该算法的有效性和可行性,提高了预测的速度和精度。 In order to overcome and improve the deficiencies of BP algorithm,this paper mended the initial values of BP,proposed a BP neural network based on simulated annealing.Taking empirical example of the power load in Nanchang,we validated the effectiveness and feasibility of this algorithm,and it had enhanced the prediction speed and accuracy comparing with the traditional BP neural network.
出处 《微计算机信息》 2010年第25期217-218,210,共3页 Control & Automation
基金 基金申请人:黎明 项目名称:动态环境下的元胞遗传算法 基金颁发部门:国家自然科学基金委(60963002) 基金申请人:程玉桂 项目名称:基于BP神经网络的南昌电力需求预测模型建立与仿真 基金颁发部门:江西省教育厅(GJJ09197)
关键词 模拟退火 BP神经网络 电力预测 simulated annealing BP neural network electric power predicting
  • 相关文献

参考文献7

  • 1H.M. Al-Hamadi and S.A.Soliman.Long-term/mid-term electric load forecasting based on short-term correlation and annual growth,Electric Power Systems Research[J].2005, 74:353-361.
  • 2王晓红,吴德会.基于WLS-SVM回归模型的电力负荷预测[J].微计算机信息,2008,24(4):312-314. 被引量:10
  • 3Xie Da and Yu Jiangyan and Yu Jilai.The physical series algorithm of mid-long term load forecasting of power systems.Electric Power Systems Researeh [J].2000, 53:31-371.
  • 4Gwo-Ching Liao and Ta-pengTsao.Application of fuzzy neural networks and artificial intelligence for load forecasling. Electric Power Systems Research[J].2004, 70:237-244.
  • 5黄海萍.基于BP神经网络的中国电力需求预测[J].科学技术与工程,2007,7(4):612-613. 被引量:13
  • 6闫利军,李宗斌,卫军胡.模拟退火算法的一种参数设定方法研究[J].系统仿真学报,2008,20(1):245-247. 被引量:31
  • 7南昌市发改委.南昌市国民经济和社会发展第十一个五年规划纲要.http://www.jxdpc.gov.cn,2006年10月.

二级参考文献12

  • 1刘怀亮.模拟退火算法及其改进[J].广州大学学报(自然科学版),2005,4(6):503-506. 被引量:15
  • 2[3]庄楚强,吴亚森.应用数理统计基础.广州:华南理工大学出版社,2007
  • 3[4]肖桂山.西方经济学.沈阳:东北财经大学出版社,2003
  • 4[3]V.N.Vapnik,The nature of statistical learning theory.New York:Spring-Verlag,1999.
  • 5[4]J.A.K.Suykens,J.Vandewalle,"Least squares support vector machine classifiers",Neural Processing Letters,1999,vol.9(3):293-300.
  • 6Shi Leyuan,ólafsson Sigurdur.Nested Partitions for Global Optimization[J].Operational Research (S0030-364X),2000,48(3):390-407.
  • 7Olafsson Sigurdur,ShiLeyuan.Ordinal Comparison via the Nested Partitions Method[J].Discrete Event Dynamic System:Theory and Application (S0924-6703),2002,12(2):211-239.
  • 8ShiLeyuan,Chen Chun-Hung.New Algorithm for Stochastic Discrete Resource Allocation Optimization[J].Discrete Event Dynamic System (S0924-6703):Theory and Application,2000,10(3):271-294.
  • 9ShiLeyuan,ólafsson Sigurdur,Chen Qun.An Optimization Framework for Product Design[J].Management Science (S0025-1909),2001,47(12):1681-1692.
  • 10Edward Lau T W,Ho Y C.Universal Alignment Probabilities and Subset Selection for Ordinal Optimization[J].Optimization Theory and Applications (S0233-1934).1997,97(3):455-489.

共引文献51

同被引文献11

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部