期刊文献+

预测交通流量时间序列的组合动态建模方法 被引量:4

Combined dynamic modeling to forecast traffic volume time series
在线阅读 下载PDF
导出
摘要 为了预测交通流量,提出一种预测交通流量的组合动态建模方法。考虑交通流量的特征,将流量时间序列分解成周期项、趋势项和混沌扰动项。采用季节性指数平滑法预测周期项和趋势项之和。该计算过程取周期为一天和一周,并用带遗忘因子的递推最小二乘法确定权重,采用邻域法预测混沌项。对实际交通流量序列的预测结果表明,交通流量与前一天和前一周的状态均存在相关性,且季节性指数平滑预测后的残差是混沌的。一周的不同统计间隔的交通流量序列预测的平均相对误差在9%以下。 A combined dynamic modeling was proposed to forecast the traffic volume time series. Taking the characteristic of the road traffic volume into account, the traffic volume time series was decomposed into the cyclic item, the tendentious item, and the chaotic disturbing item. The sum of cyclic and tendentious items was forcast by the seasonal index smoothing method. The cycle of the computation was set at one day and one week, and the weights were determined by the recursive least square method with the forgetting factor. The chaotic item was forecast by the adjacent domain method. The results of forecasting the real traffic volume time series show that the traffic volume is interrelated with the states of the preceding day and preceding week. The remnant after removal by the seasonal index smoothing forecast is chaotic. The averag relative error of the one week traffic volume forecast with different statistic gaps is less than 9%.
作者 张勇 关伟
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2010年第5期1209-1214,共6页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(60874078) '863'国家高技术研究发展计划项目(2006AA11Z212) '973'国家重点基础研究发展规划项目(2006CB70557) 高等学校博士学科点专项科研基金项目(20070004020) 新世纪优秀人才支持计划项目(NCET-08-0718)
关键词 交通运输工程 智能交通系统 交通流量时间序列 递推最小二乘法 engineering of communications and transportation intelligence transportation system traffic volume time series recursive least square method
  • 相关文献

参考文献16

二级参考文献55

共引文献290

同被引文献49

  • 1臧晓冬,周伟.城市快速路互通立交合流区交通量预测[J].交通信息与安全,2009,27(S1):12-15. 被引量:1
  • 2刘明凤,修春波.基于ARMA与神经网络的风速序列混合预测方法[J].中南大学学报(自然科学版),2013,44(S1):16-20. 被引量:10
  • 3向红军,雷彬.基于单片机系统的数字滤波方法的研究[J].电测与仪表,2005,42(9):53-55. 被引量:43
  • 4钱峰,胡光岷.网络层析成像研究综述[J].计算机科学,2006,33(9):12-17. 被引量:13
  • 5Zahra Z, Mahmoud P,Hossein S M. Application of data mining in traffic management:case of city of isfahan [ C]. Proe. of the 2010 2nd International Conference on Electronic Computer Technology, 2010: 102-106.
  • 6Nejad S,Seifi F,Ahmadi H,Seifi N. Applying data mining in prediction and classification of urban traffic [ C ]. Proc. of the 2009 WRI World Congress on Computer Science and Information Engineering, 2009, 3: 674-678.
  • 7Wen Y, Lee T. Fuzzy data mining and grey recurrent neural network forecasting for traffic information systems[C]. Proc. of the 2005 IEEE International Conference on Information Reuse and Integration, 2005: 356-361.
  • 8Hauser T, Scherer W. Data mining tools for real time traffic signal decision support and maintenance [ C ]. Proc. of the IEEE International Conference on Systems,Man, and Cybernetics,2001,3 : 1471 - 1477.
  • 9Park B, Lee D, Yun H. Enhancement of time of day based traffic signal control [ C]. Proc. of the IEEE International Conference on Systems, Man, and Cybernetics, 2003, 4: 3619-3624.
  • 10Gehrke J, Ganti V, Rarnakrishnan R, et al. BOAT-optimistic decision tree construction [ C ]. Proc. of the ACM SIGMOD International Conference on Management of Data, 1999, 28: 169-180.

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部