期刊文献+

改进多重最小支持度关联规则算法在故障诊断中的应用 被引量:6

Revised Multiple Minimum Support Associative Rules for Fault Diagnosis
在线阅读 下载PDF
导出
摘要 Apriori算法的前提是数据库中各项目的频率和重要性是相同或者相似的,但在故障诊断的实际应用中并非如此。在Apriori算法的基础上进行改进,利用多重最小支持度解决了设备故障诊断中非频繁项目的挖掘;同时针对在实际的应用中项目集的重要程度不一致的问题,提出一种基于"组件信誉值"的加权多重最小支持度算法,并通过实际的例子证明了该算法在故障诊断中的正确性和有效性。 When Apriori algorithm is adopted in data mining,it requires that the frequency and importance of the items should be similar.This is not true in fault diagnosis applications.In this paper,the Apriori algorithm is revised for equipment fault diagnosis by using weighted multiple minimum support associative rules.An example is presented to show the correctness and effectiveness of the proposed algorithm.
出处 《工业工程》 北大核心 2010年第4期108-111,共4页 Industrial Engineering Journal
基金 河北省自然科学基金资助项目(G2010001331)
关键词 多重最小支持度 关联规则 组件信誉值 故障诊断 multiple minimum support associative rules credit component values fault diagnosis
  • 相关文献

参考文献10

二级参考文献55

  • 1刘君强,孙晓莹,王勋,潘云鹤.挖掘最大频繁模式的新方法[J].计算机学报,2004,27(10):1328-1334. 被引量:15
  • 2徐康宁,王剑.要素禀赋、地理因素与新国际分工[J].中国社会科学,2006(6):65-77. 被引量:87
  • 3Fayyad U,Uthurusamy R eds.Proceedings of the First International Conference on Knowledge Discovery and Data Mining(KDD-95),The AAAI Press,Menlo Park,CA,1995
  • 4Usama Fayyad,Gregory Piatetsky-Shapiro,Padhraic Smyth.Knowledge Discovery and Data Mining:Towards a Unifying Framework.Proceedings of the Second International Conference on Knowledge Discovery and Data Mining(KDD-96),Portland,Oregon,August 2-4,1996,AAAI P
  • 5Simoudis E.Reality Check for Data Mining,IEEE Expert,1996,11(5):20-25
  • 6John G H.Enhancements to the Data Mining Process.PhD thesis,Stanford University,Computer Science Department.1997
  • 7The CRISP-DM consortium.CRISP-DM 1.0:Step-by-step data mining guide.August 2000
  • 8Mannila H.Data Mining:Machine Learning,statistics and databases.Technical Report,University of Helsinki,Finland
  • 9Herb Edelstein.Two Crows Releases 1999 Technology Report,Data Mining News,1999,2(18):10
  • 10Gregory Piatetsky-Shapiro,The Data-Mining Industry.Coming of Age.IEEE Intelligent Systems,1999,32-34

共引文献62

同被引文献51

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部