期刊文献+

应用Normal矩阵谱平分法的多社团发现 被引量:6

Detecting communities using spectral bisection method based on Normal matrix
在线阅读 下载PDF
导出
摘要 现实世界中许多实际网络都有一个共同的性质,即社团结构。揭示网络中的社团结构,对于了解网络结构与分析网络性质都是很重要的。分析了常见的社团发现算法的特点,以及谱二分法在实际应用中必须不断迭代才能完成多社团发现的不足,提出了基于Normal矩阵和k-means聚类算法的多社团发现方法。该算法能选择合适的特征向量维数,为k-means划分社团提供有效数据,相比其他算法有着较高的准确率。 Community structure is a common property that exists in complex networks.Detecting communities is important for understanding network structure and analyzing the network characteristics.The characteristics of common community finding algorithm and the drawback of spectral bisection method in application are analyzed.The method of multi-community finding in complex networks using the spectral bisection method based on normal matrix is provided.This algorithm can select the appropriate number of eigenvector dimension and provide effective data for k-means algorithm.Compared to other algorithms this algorithm has higher accuracy.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第27期43-45,共3页 Computer Engineering and Applications
基金 国家重点基础研究发展规划(973)No.2004CB318108 No.2007CB311003 国家自然科学基金No.60675031 安徽省高等学校优秀青年人才基金项目(No.2009SQRZ020ZD) 安徽大学211工程学术创新团队 安徽大学人才队伍建设经费资助~~
关键词 社团结构 Normal矩阵 谱平分法 K-MEANS聚类算法 community structure normal matrix spectral bisection method k-means algorithm
  • 相关文献

参考文献13

  • 1Watts D J,Strogatz S H.Collective dynamics of 'stall-world' networks[J].Nature,1998,393 (6684):440-442.
  • 2Barabasi A,Albert R.Emergence of scaling in random networks[J].Science,1999,286 (5439):509-512.
  • 3Kernighan B W,Lin S.A efficient heuristic procedure for partitioning graphs[J].Bell system Technical Journal,1970,49:291-307.
  • 4Pothen A,Simon H,Liou K P.Partitioning sparse matrices with eigenvectors of graphs[J].SIAM J Matrix Anal Appl,1990,11.
  • 5Newman M E J,Girvan M.Finding and evaluating community structure in networks[J].Phys Rev E,2004,69(2).
  • 6Newman M E J.Fast algorithm for detecting community structure in networks[J].Phys Rev E,2004,69(6).
  • 7Girvan M,Newman M E J.Community structure in social and biological networks[J].Proc Natl Acad Sci,2001,99(12):7821-7826.
  • 8Clauset A,Newman M E J,Moore C.Finding community structure in very large networks[J].Phys Rev E,2004,70(6).
  • 9Palla G,Derenyi I,Farkas I,et al.Uncovering the overlapping community structure of complex networks in nature and society[J].Nature,2005,435 (7043):814-818.
  • 10Capocci A,Servedio V D P,Caldarelli G,et al.Detecting communities in large networks[J].Physica A,2005,352(2-4):669-676.

二级参考文献32

  • 1解(亻刍),汪小帆.复杂网络中的社团结构分析算法研究综述[J].复杂系统与复杂性科学,2005,2(3):1-12. 被引量:86
  • 2王林,戴冠中.复杂网络中的社区发现——理论与应用[J].科技导报,2005,23(8):62-66. 被引量:50
  • 3Girvan M,Newman M E J.Community structure in social and biological networks[C]//Proceedings of National Academy of Science, 2002,99: 7821-7826.
  • 4Clauset A,Newman M E J,Moore C.Finding community structure in very large networks[J].Physical Review E,2004,70.
  • 5Newman M E J.Fast algorithm for detecting community structure in networks[J].Physical Review E,2004,69.
  • 6Kennedy J, Eberhart R C.Particle swarm optimization [C]//Proceedings of IEEE International Conference on Neural Networks,Piscataway, N J, 1995 : 1942-1948.
  • 7Eberhart R C,Kennedy J.A new optimizer using particle swarm theory[C]//Proceedings of the Sixth International Symposium on Micromachine and Human Science, Nagoya,Japan, 1995 : 39-43.
  • 8Zachary W W.An information flow model for conflict and fission in small groups[J].Journal of Anthropological Research, 1977,33: 452-473.
  • 9Girvan M,Newman M E J.Community structure in social and biological networks[C]//Proceedings of National Academy of Science, 2002,99: 7821-7826.
  • 10Newman M E J.Fast algorithm for detecting community structure in networks[J].Physical Review E,2004,69.

共引文献26

同被引文献55

  • 1尹进,胡祥培,郑毅,周子轩.社会化商务中基于经验及推荐的消费者感知信任模糊融合模型[J].中国管理科学,2020,0(1):122-133. 被引量:21
  • 2GIRVAN M, NEWMAN M [J]. Community structure in social and biological networks[J]. P Natl Acad Sci USA,2002, 99(12) : 7812-7826.
  • 3VERMA D, MEILA. A comparison of spectral clustering algorithms[R]. Washington : UW CSE, 2003.
  • 4NEWMAN M [J]. Fast Algorithm for Detecting Community Structure in Networks[J]. Phys Rev E, 2004, 69 (6) :066133.
  • 5PALLA G, DERENYI I, FARKAS I,et al. Uncovering the overlapping community structure of complex networks in nature and society[J]. Nature 2005,435(7043) : 814-818.
  • 6ADAMCSEK B, PALLA G, FARKAS I, et al. CFinder:locating clique and overlapping modules in biological networks [J]. BIOINFORMATICS APPLICATIONS NOTE, 2005,00(00) : 1-2.
  • 7ZHANG S, WANG R, ZHANG X. Identification of overlapping community structure in complex networks using fuzzy c-means elustering[J]. Physical A, 2007,374 (1) : 483-490.
  • 8DUNN J C A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters[J]. Cy- bernet. 1973,3(3) : 32-57.
  • 9BEZDEK J C. Pattern recognition with fuzzy objective function algorithms[M]. New York:Plenum Press, 1981.
  • 10NEWMAN M [J, GIRVAN M. Finding and evaluating community structure in networks[J]. Physical Review E. 2004, 69:96-113.

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部