期刊文献+

基于多学科虚拟样机的粘着控制仿真平台 被引量:7

Simulation Platform of Adhesion Control Based on Multidisciplinary Virtual Prototyping
在线阅读 下载PDF
导出
摘要 重载列车和准高速动车组的运行,使轮轨之间的粘着经常处于极限状态,因此需要研究更先进的控制方法来优化利用粘着力。建立了包括牵引系统、控制系统和机车多体动力学模型的多学科虚拟样机仿真平台。使用机械动力学仿真软件ADAMS/Rail建立了某种电力机车的多体动力学仿真模型;利用MATLAB建立了组合粘着控制算法;通过联合仿真实现了针对机车粘着控制系统的多学科虚拟样机仿真。联合仿真平台成为了沟通粘着控制方法理论研究和试验研究的桥梁,为智能控制方法在粘着系统中的应用提供了有效的仿真环境。 With heavy-haul train and high-speed electric multiple unit (EMU) operation,the adhesion between wheel and rail often reaches limit states.Therefore the advanced control arithmetic should be studied to optimize the use of the adhesion force.A simulation platform was built including traction system,control system and multi-body dynamics model of an locomotive.The model of the electric locomotive was established with ADAMS/Rail (Automatic Dynamic Analysis of Mechanical Systems).Then a hybrid adhesion control algorithm was designed using MATLAB.The adhesion control system can be studied with co-simulation of different simulation tools.The theoretical and experimental studies are realized with the simulation platform.It provides a new and effective ways to study the adhesion control.
出处 《系统仿真学报》 CAS CSCD 北大核心 2010年第10期2384-2386,2417,共4页 Journal of System Simulation
基金 国家自然科学基金(60674057) 教育部博士点基金(20060613003)
关键词 粘着控制 电力机车 多学科虚拟样机 防空转 adhesion control electric locomotive multidisciplinary virtual prototyping anti-slip
  • 相关文献

参考文献7

  • 1T Gadjar, I Rudas, Y Suda. Neural network based estimation of friction coefficient of wheel and rail [C]// IEEE International Conference on Intelligent Engineering Systems. USA: IEEE, 1997: 315-318.
  • 2K Ohishi, Y Ogawa, I Miyashita, S Yasukawa. Adhesion control of electric motor coach based on force control using disturbance observer [C]// IEEE International Conference on Advanced Motion Control, Japan. USA: IEEE, 2000: 323- 328.
  • 3B Hale-Heighway, C Murray, S Douglas, M Gilmartin. Multi-body dynamic modeling of commercial vehicles [J]. Computing & Control Engineering Journal (S0956-3385), 2002, 13(1): 11-15.
  • 4Polach O. Influence of locomotive tractive effort on the forces between wheel and rail [J]. Vehicle System Dynamics (S0042-3114), 2001, 35(Supplement): 7-22.
  • 5G Schupp, A Jaschinksi. Virtual prototyping: the future way of designing railway vehicles [J]. Int. J. of Vehicle Design (SO 143-3369), 1999, 22(2): 93-115.
  • 6Mechanical Dynamics Incorporated. Getting Started Using ADAMS/ Controls [M]. Mechanical Dynamics Incorporated, 2002.
  • 7D-Y Park, M-S Kim, D-H Hwang, J-H Lee, Y-J Kim. Hybrid re-adhesion control method for traction system of high-speed railway [C]// Proceedings of the Fifth International Conference on Electrical Machines and Systems, China. USA: IEEE, 2001: 739-742.

同被引文献46

  • 1陈建政,陈伟,周艳红.基于径向基函数神经网络的轮轨力检测[J].振动工程学报,2004,17(z1):481-483. 被引量:4
  • 2黄景春,肖建,蒋林,陈爽.利用小波分析和云模型实现机车优化粘着控制[J].计算机应用研究,2009,26(2):634-636. 被引量:4
  • 3徐志根,白裔峰,王辉,肖建.电力机车模糊间接自适应粘着控制[J].系统仿真学报,2006,18(11):3192-3195. 被引量:3
  • 4黄景春,肖建.基于二维云模型的机车粘着控制及其仿真研究[J].机车电传动,2007(1):11-14. 被引量:8
  • 5LEVA S, Morando A P, Colombaioni P. Dynamic Analysis of a High-speed Train[J]. Vehicular Technology, 2008, 57(1): 107-119.
  • 6Zadeh L A. The concept of a linguistic variable and its application to approximate reasoning[J]. Information Sciences, 1975, 2(8): 199-249.
  • 7Onoda Y, Onuma Y, Goto T, et al. Design Concept and Advantages of Steer-by-Wire System[C]. SAE Paper 2008-01-0493.
  • 8Mendel J M. On a 50% savings in the Computation of the centroid of a symmetrical interval type-2 fuzzy set [J]. Information Sciences, 2005, 172(4): 417-430.
  • 9Mendel J M. Uncertain Rule-based fuzzy logic systems: Introduction and New Direction[M]. Upper Saddle River, New Jersey: Prentice Hall, 2000.
  • 10R. Palm and K. Storjohann. Torque optimization for a locomotive using fuzzy logic [J]. Proceedings of the 1994 ACM symposium on Applied Computing, 1994, 4:105-109.

引证文献7

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部