摘要
考虑方程(-1)n-ky(n)(x)=f(x,y)在边值条件y(i)(0)=0,0≤i≤k-1,y(j)(1)=0,0≤j≤n-k-1下多个正解的存在性.假定f在一端(零点或无穷远点)超线性增长,而在另一端次线性增长。
Consider the existence of the multiple positive solutions for differential equation, (-1) n-k y (n) (x)=f(x,y),0<x<1 , satisfying the boundary value conditions y (i) (0)=0,0≤i≤k-1,y (j) (1)=0,0≤j≤n-k-1. The existence of at least two positive solutions is obtained.Where f is superlinear at one end(zero or infinity)and sublinear at the other end.
出处
《西北师范大学学报(自然科学版)》
CAS
1999年第3期18-21,共4页
Journal of Northwest Normal University(Natural Science)
关键词
非线性
共轭边值问题
超线性
正解
存在性
nonlinear conjugate boundary value problem
superlinear
sublinear
cone
compact mapping
fixed point index