期刊文献+

基于IUKF的非线性状态估计 被引量:2

Nonlinear State Estimation Based on Iterated Unscented Kalman Filter
在线阅读 下载PDF
导出
摘要 为了提高测量更新的近似精度,将迭代卡尔曼滤波(IKF)的思想引入到UKF中,得到迭代无迹卡尔曼滤波算法(IUKF)。理论分析与仿真结果表明:IKF的引入在提高非线性近似精度的前提下并没有增加计算的复杂性;在相同数量级运算时间的条件下,其估计性能明显优于标准EKF和UKF滤波器。 In order to improve the approximation accuracy of the measurement update, the paper introduced iterated Kalman filter (IKF) into the unscented Kalman filter (UKF), formed the iterated unscented Kalman filter algorithm (IUKF). Theoretical analysis and simulation results show that: IUKF can improve the accuracy of non-linear approximation without increasing the complexity of calculation, so it has better performance than the standard EKF and UKF with similar computation burden.
出处 《机械工程与自动化》 2010年第5期7-9,13,共4页 Mechanical Engineering & Automation
基金 山西省自然科学基金资助项目(2009011026-2)
关键词 状态估计 非线性 无迹变换 无迹卡尔曼滤波器 state estimation nonlinear unscented transformation unscented Kalman filter
  • 相关文献

参考文献5

  • 1潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:231
  • 2Julier S J,Uhlmann J K.Unscented filtering and nonlinear estimation[J].Proceedings of the IEEE,2004,92(3):401-422.
  • 3Zhan R H,Wan J W.Iterated unscented Kalman filter for passive target tracking[J].IEEE Transactions on Aerospace and Electronic Systems,2007,43(3):1155-1163.
  • 4Banani S A,Masnadi-Shirazi M A.A new version of unscented Kalman filter[J].Proceedings of World Academy of Science,Engineering and Technology,2007,20:192-197.
  • 5Athans M,Wishner R P,Bertolini A B.Suboptimal state estimation for continuous time nonlinear systems from discrete noisy measurements[J].IEEE Transactions on Automatic Control,1968,13(5):504-514.

二级参考文献74

  • 1Arulampalam S,Maskell S,Gordon N,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Trans on Signal Processing,2002,50(2):174-188.
  • 2Thrun S,Fox D,Burgard W,et al.Robust monte carlo localization for mobile robots[J].Artificial Intelligence,2001,128(1-2):99-141.
  • 3Julier S J,Uhlmann J K,Durrant-Whyten H F.A new approach for filtering nolinear system[A].Proc of the American Control Conf[C].Washington:Seattle,1995:1628-1632.
  • 4Julier S J,Uhlmann J K.A general method for approximating nonlinear transformations of probability distributions[EB/OL].http://www.robots.ox.ac.uk/~siju/work/publications/Unscented.zip,1997-09-27.
  • 5Julier S J,Uhlmann J K.A consistent,debiased method for converting between polar and Cartesian coordinate systems[A].The Proc of AeroSense:The 11th Int Symposium on Aerospace/Defense Sensing,Simulation and Controls[C].Orlando,1997:110 -121.
  • 6Julier S J,Uhlmann J K.A new extension of the Kalman filter to nonlinear systems[A].The Proc of AeroSense:11th Int Symposium Aerospace/Defense Sensing,Simulation and Controls[C].Orlando,1997:54-65.
  • 7Julier S J.A skewed approach to filtering[A].The Proc of AeroSense:12th Int Symposium Aerospace/Defense Sensing Simulation Control[C].Orlando,1998:271-282.
  • 8Julier S J.The spherical simplex unscented transformation[A].American Control Conf[C].Denver,2003:2430-2434.
  • 9Julier S J,Uhlmann J K,Durrant-Whyte H F.A new approach for the nonlinear transformation of means and covariances in filters and estimators[J].IEEE Trans on Automatic Control,2000,45(3):477-482.
  • 10Lefebvre T,Bruyninckx H,De Schutter J.Comment on"a new method for the nonlinear transformation of means and covariances in filters and estimators"[J].IEEE Trans on Automatic Control,2002,47(8):1406-1408.

共引文献230

同被引文献12

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部