期刊文献+

基于径向基函数神经网络的热轧产品性能预测 被引量:3

Predict Mechanical Properties of Hot-Rolling Steel by Using RBF Neural Network
在线阅读 下载PDF
导出
摘要 针对热连轧带钢生产过程中钢材内部一系列复杂的相变与物理变化以及涉及到的海量数据,可利用数据挖掘基本方法建立模型,提取规则,实现热连轧带钢生产的性能预测与评价功能。本文使用径向基函数神经网络建立模型,实现热轧产品性能预测。径向基函数神经网络在逼近能力、学习速度等方面都优于传统BP神经网络,本文将根据二者网络结构说明径向基函数神经网络的优越性。 Because of the complex series of phase and physical change ,as well as large amounts of data in hot rolling of steel strip production process, tract rules and achieve the performance prediction and function evaluation of hot rolling strip production. The article uses radial basis function (RBF) neural network to model,and implement the performance prediction of hot rolling strip production. The RBF neural network is better than the traditional BP neural network when considering approximation capabilities, learning rate and so on. This paper shows the superiority of RBF neural network according to the network structures of RBF and BP.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2010年第3期182-186,共5页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(90924029 10761007) 国家重点科技研究发展计划项目(2006BAH03B05) 国家高技术研究发展计划项目(2009AA04Z136)
关键词 热连轧带钢 径向基函数神经网络 BP神经网络 hot rolling steel radial basis function neural network BP neural network
  • 相关文献

参考文献10

二级参考文献41

  • 1陆金桂,王石刚,胡于进,周济,余俊.多层神经网络BP算法的研究[J].计算机工程,1994,20(1):17-19. 被引量:12
  • 2魏东,张明廉,蒋志坚,孙明.基于贝叶斯方法的神经网络非线性模型辨识[J].计算机工程与应用,2005,41(11):5-8. 被引量:28
  • 3Witten 1 H,Frank E. Data Mining: Practical machine Learning Tools and Techniques[M]. 2nd edition. [s. l. ]:Elsevier Inc, 2005.
  • 4Sing J K, Basu D K, Nasipuri M, et al. Self - Adaptive RBF Neural Network- Based Segmentation of Medical Images of the Brain [ J ]. Proceedings of ICISIP, 2005, 18 ( 7 ) : 447 - 452.
  • 5Guo J J, Luh P B. Selecting Input Factors for Cluzters of Gaussian Radial Basis Function Networks to Improve Market Clearing Price Prediction [ J ]. IEEE Transactions on Power Systems, 2003,18(2) :665 - 672.
  • 6Han J, Kamber M. Data Mining: Concepts and Techniques [M]. 2nd edition. [s. l. ]:Morgan Kaufmann,2006.
  • 7Mclachlan G, Krishnan T. The EM Algorithm and Extension [M]. New York: John Wiley & sons,1997.
  • 8Chen S,Cowan C F N,Grant P M. Orthogonal Least Squares Learning algorithm for Radial Basis Function Networks[J ]. IEEE Transacrions on Neural Networks,1991, 2 ( 2 ) : 302 - 309.
  • 9Maciejewski A A, Klein C A. The Singular Value Decomposition and Application to Robotics[J ]. The International Journal of Robotics Research, 1989,8(6) :63 - 79.
  • 10Haykin S. Neural Networks: A Comprehensive Foundation [M].2nd edition.北京:清华大学出版社,2001.

共引文献44

同被引文献26

  • 1孙增圻,张再兴.智能控制的理论与技术[J].控制与决策,1996,11(1):1-8. 被引量:41
  • 2王建军,徐宗本.近似指数型神经网络的本质逼近阶[J].中国科学(E辑),2006,36(6):579-592. 被引量:4
  • 3Beynon J H, Sellars C M. Modelling microstrueture and its effects during multipass hot rolling[J]. ISIJ International, 1992,32 (3) : 359-367.
  • 4Sellars C M, Whiteman J A. Recrystallization and grain growth in hot rolling[J]. Metal Science, 13, 1979,3(4) : 187-194.
  • 5Sellars C M. Computer modelling of hot working processes[C]//Perspectives in Metallurgical Devel- opment, Proceedings of the Centenary Conference. Sheffield, Engl: Metals Soc (Book 318), 1984:209- 217.
  • 6MilitzerM,SamarasekeraIV,JinDQ,eta1.热轧带钢组织性能预报模型的进展[C]//1999中国钢铁年会论文集(下).北京:中国金属学会,1999:658-664.
  • 7Samarasekera I V, Jin D Q, Brimacomhe J K. The application of microstructural engineering to the hot rolling of steel [C]//38th Mechanical Working and Steel Processing Conference Proceedings. Cleveland, USA: [s.n. ], 1996:313-327.
  • 8刘正东,唐广波,干勇.热轧组织性能预报技术的回顾与展望[C]//20lO年全国轧钢生产技术会议论文集.内蒙古:中国金属学会,2010:21-25,46.
  • 9Muirhead R J. Aspects of multivariate statistical theory[M]. New York, USA:John Wiley & Sons, 1982.
  • 10Sanner R M, Slotine J J E. Gaussian networks for direct adaptive control[J]. IEEE Transactions on Neural Networks, 1992,3(6) : 837-863.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部