期刊文献+

关联规则挖掘中Apriori算法的研究与改进 被引量:95

Research and improvement on Apriori algorithm of association rule mining
在线阅读 下载PDF
导出
摘要 经典的产生频繁项目集的Apriori算法存在多次扫描数据库可能产生大量候选及反复对候选项集和事务进行模式匹配的缺陷,导致了算法的效率较低。为此,对Apriori算法进行以下3方面的改进:改进由k阶频繁项集生成k+1阶候选频繁项集时的连接和剪枝策略;改进对事务的处理方式,减少Apriori算法中的模式匹配所需的时间开销;改进首次对数据库的处理方法,使得整个算法只扫描一次数据库,并由此提出了改进算法。实验结果表明,改进算法在性能上得到了明显提高。 The classic Apriori algorithm for discovering frequent itemsets scans the database many times and the pattern matching between candidate itemsets and transactions is used repeatedly, so a large number of candidate itemsets were produced, which results in low efficiency of the algorithm. The improved Apriori algorithm improved it from three aspects: firstly, the strategy of the join step and the prune step was improved when candidate frequent (k+1)-itemsets were generated from frequent k-itemsets; secondly, the method of dealing with transaction was improved to reduce the time of pattern matching to be used in the Apriori algorithm; in the end, the method of dealing with database was improved, which lead to only once scanning of the database during the whole course of the algorithm. According to these improvements, an improved algorithm was introduced. The efficiency of Apriori algorithm got improvement both in time and in space. The experimental results of the improved algorithm show that the improved algorithm is more efficient than the original.
出处 《计算机应用》 CSCD 北大核心 2010年第11期2952-2955,共4页 journal of Computer Applications
基金 教育部科学研究项目(09yjc870032) 重庆市科技攻关计划项目(CSTC2008AC2126 CSTC2009AC2034) 重庆市自然科学基金资助项目(CSTC2008BB2065) 重庆理工大学科研青年基金资助项目(2010ZQ22)
关键词 数据挖掘 关联规则 APRIORI算法 频繁项集 候选项集 data mining association rule Apriori algorithm frequent itemsets candidate item set
  • 相关文献

参考文献17

  • 1AGRWAL R, SRIKAN R. Fast algorithms for mining association rules in large databases [ C]//Proceedings of the 20th International Conference on Very Large Data Bases. San Francisco: Morgan Kaufmann Publishers, 1994:487 - 499.
  • 2何军,刘红岩,杜小勇.挖掘多关系关联规则[J].软件学报,2007,18(11):2752-2765. 被引量:38
  • 3王小玉,王亚东,冯丽.关联规则的挖掘[J].信息技术,2003,27(1):55-57. 被引量:20
  • 4PARK J S, CHEN M S, YU P S. An effective Hash based algorithm for mining association rules [ C]//Proceedings of International Conference on the Special Interest Group on Management of Data. New York: ACM, 1995:175 - 186.
  • 5尤磊,兰洋,熊炎.一种基于关系代数的Apriori优化方法[J].信阳师范学院学报(自然科学版),2010,23(1):156-160. 被引量:6
  • 6HAN J, FU Y. Discovery of multiple-level association rules from large databases [ C]//Proceedings of the 20th International Conference on Very Large Database. Zuich, Switzerland: [ s. n. ], 1995: 420 - 431.
  • 7SAVASERE A, OMIECINSKI E, NAVATHE S. An efficient algorithm for mining association rules in large databases [ C]// Proceedings of the 21st International Conference on Very Large Database. New York: ACM, 1995:432-443.
  • 8TOLVONEN H . Sampling large databases for association rules [C]// Proceedings of the 22nd International Conference on Very Large Database. Bombay, India [ s. n. ], 1996:134 - 145.
  • 9BRIN S. Dynamic itemset counting and implication rules for market basket analysis [ C l// Proceedings of International Conference on the Special Interest Group on Management of Data. New York ACM, 1997:255-264.
  • 10杨志刚,何月顺.基于压缩事务矩阵相乘的Apriori改进算法[J].中国新技术新产品,2010(6):57-58. 被引量:7

二级参考文献46

共引文献202

同被引文献761

引证文献95

二级引证文献579

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部