期刊文献+

带Poisson跳的随机种群扩散系统半隐式欧拉方法的数值解 被引量:1

The Semi-implicit Euler Method for A Stochastic Age-structured Population System with Poisson Jump
在线阅读 下载PDF
导出
摘要 讨论了带Poisson跳的随机种群扩散系统,利用It公式、Burkholder-Davis-Gundy不等式、Gronwall引理及一些不等式,根据半隐式欧拉方法,证明了带Poisson跳的随机种群扩散系统数值解的收敛性.最后,通过数值算例对数值方法进行了说明. In this paper,stochastic age-structured population system with jump are studied.It is proved that the semi-implicit Euler approximation solutions converge to the analytic solution for the stochastic age-structured population system with Poisson jump.An example is given for illustration.The analysis use It's formula,Burkholder-Davis-Gundy's inequality and some special inequalities for the purposes.
出处 《宁夏大学学报(自然科学版)》 CAS 北大核心 2010年第3期207-212,共6页 Journal of Ningxia University(Natural Science Edition)
基金 教育部重点基金资助项目(208160) 宁夏自然科学基金资助项目(NZ0835)
关键词 随机种群扩散系统 半隐式欧拉方法 POISSON跳 数值解 stochastic age-structured population system semi-implicit Euler method Poisson jump numerical solution
  • 相关文献

参考文献9

  • 1丁效华,马强.解随机森林发展方程的半隐式欧拉法的收敛性(英文)[J].黑龙江大学自然科学学报,2008,25(6):719-730. 被引量:3
  • 2张磊,张启敏.随机Navier-Stokes方程数值解的收敛性[J].应用数学,2008,21(3):504-509. 被引量:7
  • 3HUANG Chuangxia,HE Yigang,WANG Hainu.Mean square exponential stability of stochastic recurrent neural networks with time-varying delays[J].Computers and Mathematics with Applications,2008,56:1773-1778.
  • 4ZHANG Qimin,HAN Chongzhao.Existence and uniqueness for a stochastic age-structured population system with diffusion[J].Science Direct,2008,32:2197-2206.
  • 5ZHANG Qimin,LIU Wenan,NIE Zankan.Existence,uniqueness and exponential stability of stochastic age-dependent population[J].Appl Math Comput,2004,154:183-201.
  • 6ZHANG Qimin,HAN Chongzhao.Convergence of numerical solutions to stochastic age-structured population system with diffusion[J].Applied Mathematics and Computation,2006,07:156-163.
  • 7ZHANG Qimin.Exponential stability of numerical solutions to a stochastic age-structured population system with diffusion[J].Journal of Computational and Applied Mathematics,2008,220:22-33.
  • 8ZHANG Qimin,HAN Chongzhao.Numerical analysis for stochastic age-dependent population equations[J].Appl Math Comput,2005,176:210-223.
  • 9GARDON A.The order of approximations for solutions of It-type stochastic differential equations with jumps[J].Stochastic Analysis and Applications,2004,38:753-769.

二级参考文献13

  • 1于景元,王文蔚,魏礼平,李延保,朱广田.林龄面积转移方程解的性质[J].应用数学学报,1994,17(4):606-612. 被引量:60
  • 2Zhang Qimin,Nie Zankan. Existence and uniqueness for stochastic age-dependent population[A ]. Lecture Notes in Computer Science[C]. New York:Springer, 2005,3521 : 151-161.
  • 3Zhang Qimin, Zhang Weiguo, Nie Zankan. Convergence of the Euler scheme for stochastic functional partial differential equation[J]. Applied Mathematics and Computation,2004,155:479-492.
  • 4Zhang Qimin, Han Changzhao. Convergence of numerical solutions to stochastic age-structured popution system with diffusion[J]. Applied Mathematics and Compution,2007,186 : 1234-1242.
  • 5Sehmalfub B. Endliehdimensionale approximation der stoehastisehen Naviet-Stokes-Gleiehung[J]. Statistics, 1990,2 : 149-157.
  • 6Breckner H(Lisei). Galerkin approximatio and the strong solution of the stochastic Navier-Stokes equation[J]. J. Appl. Math. Stoch. Anal. ,2000,13:239-259.
  • 7Bjorn Schmalfuss. Qualitaive properties for the stochastic Navier-stokes equation[J]. Nonlinear Analysis, Theory, Methods & Applications, 1997,28(9): 1545-1563.
  • 8Zhang Qimin, Han Congzhao. Numerical analysis for stochastic age-dependent population equations[J]. Applied Mathematics and Computation,2005,169 : 278-294.
  • 9Liao Xiaoxin. Theory Methods and Application of Stability[M].武汉:华中科技大学出版社,1999.
  • 10Glenn Marion, Mao Xuerong, Eric Renshaw. Convergence of the Euler scheme for a class of stochastic differential equation[J]. International Mathematical Journal,2002, (1): 9-22.

共引文献8

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部