期刊文献+

机器学习在P2P流量检测中的研究 被引量:3

Study on Applications of Machine Learning in P2P Traffic Identification
在线阅读 下载PDF
导出
摘要 P2P流量逐渐成为了互联网流量的重要组成部分,在对Internet起巨大推动作用的同时,也带来了因资源过度占用而引起的网络拥塞以及安全隐患等问题,妨碍了正常的网络业务的开展。文中提出了基于机器学习的P2P流量识别方案,并运用FCBF(Fast Correlation-Based Filter)特征选择算法形成了流量特征子集,构建了机器学习P2P流量识别模型并对比了几种常见的机器学习算法在流量识别方面的性能。测试实验结果表明,C4.5算法和贝叶斯网络算法都适合于P2P流量检测,其个别模型达到了90%以上的识别率。 P2P traffic has taken great portions in the network traffic.While having a significant impact on the Internet,it brings serious problems such as network congestion and traffic hindrance caused by the excessive occupation in the bandwidth.Proposes a P2P traffic identification based on machine learning.Firstly the FCBF(Fast Correlation-Based Filter)feature selection algorithm is used to select the attribute features subset,then P2P flows identification model is built and several machine learning algorithms are compared.The result showed that in P2P traffic identification based on machine learning algorithms,C4.5 and Bayesian network was feasible and the identification accuracy of some models can reach above 90 percent.
出处 《计算机技术与发展》 2010年第11期133-136,共4页 Computer Technology and Development
基金 国家自然科学基金(60973139 60773041) 江苏省自然科学基金(BK2008451) 江苏省级现代服务业发展专项资金 江苏高校科技创新计划项目(CX09B-153Z CX08B-086Z) 南京邮电大学青蓝工程项目(NY206034 NY208011) 江苏省六大高峰人才项目(2008118)
关键词 对等网络 流量识别 机器学习算法 特征选择 P2P identification of traffic machine learning algorithm feature selection
  • 相关文献

参考文献11

  • 1吴国庆.对等网络技术研究[J].计算机技术与发展,2008,18(7):100-103. 被引量:28
  • 2蒋海明,张剑英,王青青,彭娟.P2P流量检测与分析[J].计算机技术与发展,2008,18(7):74-76. 被引量:25
  • 3McGraw-Hill.机器学习[M].曾华军,张银奎,等译.北京:机械工业出版社,2003.
  • 4威滕.数据挖掘:实用机器学习技术[M].北京:机械工业出版社,2006.
  • 5Zuev D, Moore A. Traffic classification using a statistical approach[J ]. Lecture Notes in Computer Science, 2005,3431 : 321 - 324.
  • 6Constantinou F, Mavrommatis P. Identifying Known and Unknown Peer - to - Peer Traffic [ C ]//Proceedings of Fifth IEEE International Symposium on Network Computing and Applications. [ s. l. ] : [ s. n. ], 2006: 93 - 102.
  • 7Karagiannis T, Broido A, Faloutsos M, et al. Transport Layer Identification of P2P Traffic[ C]//In: Proc. of ACM SIGCOMM IMC. Taormina, Sicily, Italy: [s. n. ] ,2004:121 - 134.
  • 8吴敏,王汝传.基于主机的P2P流量检测与控制方案[J].计算机技术与发展,2009,19(10):26-29. 被引量:9
  • 9Yu Lei, Liu Huan. Feature selection for high- dimensional data: a fast correlation-based filter solution[C]//in: Proceedings of the 20th International Conference on Machine Learning ( ICML' 03 ). Washington, D. C. : [ s. n. ], 2003: 856 - 863.
  • 10Erman J, Mahanti A, Arlitt M, et al. Offline/realtime traffic classification using semi- supervised learning[ C] //26th International Symposium on Computer Performance, Modeling, Measurements, and Evaluation. [s. l. ]: [s. n. ], 2007:1194 - 1213.

二级参考文献45

  • 1宫婧,孙知信,顾强.基于行为特征描述的P2P流识别方法的研究[J].小型微型计算机系统,2007,28(1):48-53. 被引量:5
  • 2Bartlett G, Heidemann J, Papadopoulos C. Inherent Behaviors for Online Detection of Peer- to- Peer File Sharing [ C ]//In Proceedings of 10th IEEE Global Internet Symposium (GI ' 07 ) in conjunction with IEEE INFOCOM 2007. Anchorage, AK, USA: [s. n. ],2007:55- 60.
  • 3Pereira R L, Vazao T, Rodrigues R. Adaptive ,Search Radius- Lowering Internet P2P File Sharing Traffic through Self - Restraint [ C ]//in The 6th IEEE International Symposium on Network Computing and Applications ( IEEE NCA07), [s. 1,]: [s. n. ] ,2007:253 - 256.
  • 4Zander S, Nguyen T, Armitage G. Automated Traffic Classification and Application Identification using Machine Learning [C]//In:Proceedings of the IEEE Conference on Local Computer Networks ( LCN 2005 ). Sydney, Australia: [ s. n. ], 2005 : 250 - 257.
  • 5陈海军,王四春,叶晖.Linux内核扩展模块的P2P流量控制方法与研究[J].计算机工程与设计,2007,28(16):3912-3914. 被引量:3
  • 6刘德刚,周刚,向金海.基于Napster架构的P2P空间数据共享研究[J].微计算机信息,2007,23(27):219-220. 被引量:5
  • 7程学旗 余智华 陆天波.P2P技术与信息安全[J].信息技术快报,2004,(3).
  • 8CacheLogic[ EB/OL]. 2006. http://www. cachelogic. com/.
  • 9BitTorrent[EB/OL]. 2007. http://www. bittorrent. com/.
  • 10Karagiann I T, Broidoa, Faloutsosm. Transport Layer Iden- tification of P2P Traffic[ C]//Proceedings of the 4th ACM SIGOOMM Conference on Internet Measurement. New York: ACM Press, 2004:121 - 134.

共引文献51

同被引文献21

  • 1Minho J O,Han Longzhe,Kim D,et al.Selfish attacks and detection in cognitive radio Ad-Hoc networks[J].IEEE Net-work,2013,27(3):46-50.
  • 2赵知劲,郑仕链,尚俊娜.认知无线电技术[M].北京:科学出版社,2013.
  • 3Li Deng,Li Xiao.Machine learning paradigms for speech recognition:an overview[J].IEEE Transactions on Audio,Speech,and Language Processing,2013,21(5):1060-1089.
  • 4Thilina K M,Choi K W,Saquib N,et al.Machine learning techniques for cooperative spectrum sensing in cognitive radio networks[J].IEEE Journal on Selected Areas in Communications,2013,31(11):2209-2221.
  • 5He Xiaofan,Dai Huaiyu,Ning Peng.HMM-based malicious user detection for robust collaborative spectrum sensing[J].IEEE Journal on Selected Areas in Communications,2013,31(11):2196-2208.
  • 6Ranjan R,Mitra D.Order estimation of HMM discrete channel model for OFDM systems[C]//Proc of international conference on communications,devices and intelligent systems.[s.l.]:[s.n.],2012:41-44.
  • 7Pan Shing-tai,Chen Ching-fa,Tsai Yi-heng.Genetic algorithm on speech recognition by using DHMM[C]//Proc of 7th IEEE conference on industrial electronics and applications.Singapore:IEEE,2012:1333-1338.
  • 8Liu Guohai,Jiang Xingke,Mei Congli.Soft-sensing modeling method based on continuous hidden Markov model for microbial fermentation process[C]//Proc of Chinese control and decision conference.[s.l.]:[s.n.],2010:1106-1110.
  • 9石云平.数据挖掘与统计学的关系研究[J].国外电子测量技术,2009,28(6):21-23. 被引量:2
  • 10徐鹏,林森.基于C4.5决策树的流量分类方法[J].软件学报,2009,20(10):2692-2704. 被引量:171

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部