期刊文献+

一种基于似最小生成树的空间聚类算法 被引量:8

A Spatial Clustering Algorithm Based on Minimum Spanning Tree-like
原文传递
导出
摘要 根据空间邻近目标的距离变化情况,定义了边长变化因子概念,给出了一种似最小生成树的构建方法。在此基础上,提出了一种基于似最小生成树的空间聚类算法。模拟数据和实际数据分析发现,基于似最小生成树的空间算法能够发现任意形状的空间簇和异常点,并能够很好地适应空间数据分布不均匀的特点。通过与经典的DBSCAN算法比较,发现基于似最小生成树的空间聚类算法比DBSCAN算法更具有实用性。 The concept of edge variation factor is firstly defined based upon the distance variation among the entities in the spatial neighborhood.An approach is presented to construct the minimum spanning tree-like(MST-L for short).Further,a MST-L based spatial clustering algorithm(MSTLSC for short) is developed.Two tests are implemented to demonstrate that the MSTLSC algorithm very robust and suitable to find the clusters with arbitrary shape,especially the algorithm has good adaptive characteristic.A comparative test is made to prove the MSTLSC algorithm better than classic DBSCAN algorithm.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2010年第11期1360-1364,共5页 Geomatics and Information Science of Wuhan University
基金 国家863计划资助项目(2009AA12Z206) 地理空间信息工程国家测绘局重点实验室开放研究基金资助项目(200805) 江苏省资源环境信息工程重点实验室开放研究基金资助项目(20080101) 中南大学研究生论文创新选题资助项目(713360010)
关键词 空间聚类 自适应 边长变化因子 似最小生成树 spatial clustering adaptive edge variation factor minimum spanning tree-like
  • 相关文献

参考文献14

  • 1李德仁,王树良,李德毅,王新洲.论空间数据挖掘和知识发现的理论与方法[J].武汉大学学报(信息科学版),2002,27(3):221-233. 被引量:237
  • 2李斐,王殊伟,柯宝贵.应用聚类分析方法进行实测重力数据的选点优化[J].武汉大学学报(信息科学版),2009,34(3):257-260. 被引量:6
  • 3王海军,张德礼.基于空间聚类的城镇土地定级方法研究[J].武汉大学学报(信息科学版),2006,31(7):628-631. 被引量:25
  • 4Macqueen J. Some Methods for Classification and Analysis of Multivariate Observations[C]. The 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, 1967.
  • 5Kaufman L, Rousseeuw P J. Finding Groups in Data: An Introduction to Cluster Analysis[M]. New York: John Wiley & Sons, 1990.
  • 6Zhang T, Ramakrishnan R, Livny M. BIRCH. An Efficient Data Clustering Method for Very Large Databases[C]. The International Conference Management of Data, Montreal, Canada, 1996.
  • 7Guha S, Rastogi R, Shim K. CURE: An Efficient Clustering Algorithm for Large Databases[C]. 1998 ACM-SIGMOD International Conference on Management of Data (SIGMOD'98), Seattle, Washington, 1998.
  • 8Ester M, Kriegel H P, Sander J, et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[C]. The 2nd the International Conference on Knowledge Discovery and Data Mining, Portland, OR, 1996.
  • 9Hinneburg A, Keim D A. An Efficient Approach to Clustering in Large Multimedia Databases with Noise[C]. The 1998 International Conference on Knowledge Discovery and Data Mining (KDD' 98). New York, 1998.
  • 10Zahn C T. Graph-theoretical Methods for Detecting and Describing Gestalt Clusters[J].IEEE Transaction on Computers, 1971, C20:68-86.

二级参考文献77

共引文献276

同被引文献76

  • 1张惟皎,刘春煌,李芳玉.聚类质量的评价方法[J].计算机工程,2005,31(20):10-12. 被引量:61
  • 2PeiT, Zhu A X, Zhou C H, et al. A New Ap- proach to the Nearest-neighbor Method to Discover Cluster Features in Overlaid Spatial Point Processes [J]. International Journal of Geographical Informa- tion Science, 2006, 20(2) : 153-168.
  • 3Tung A K H, Hou J, Han J. COE: Clustering with Obstacles Entities, a Preliminary Study[C]. The 4th Pacific-Asia Conference on Knowledge Dis- covery and Data Mining, Heidelberg, 2000.
  • 4Macqueen J. Some Methods for Classification and Analysis of Multivariate Observations[C]. The 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, California, 1967.
  • 5Ng R, Han J. Efficient and Effective Clustering Method for Spatial Data Mining[C]. The 1994 In- ternational Conference on very Large Data Bases, Santiago, 1994.
  • 6Zhang T, Ramakrishnan R, Livny M. BIRCH,. an Efficient Data Clustering Method for very Large Da- tabases[C]. The ACM SIGMOD International Con- ference on Management of Data, Montreal, Canada, 1996.
  • 7Guha S, Rastogi R, Shim K. CURE: an Efficient Clustering Algorithm for Large Databases[C]. The 1998 ACM-SIGMOD International Conference on Management of Data, Seattle, Washington D C, 1998.
  • 8Ester M, Kriegel H P, Sander J, et al. A Density- Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[C]. The 2nd the In- ternational Conference on Knowledge Discovery and Data Mining, Portland, OR, 1996.
  • 9Ankerst M, Breunig M M, Kriegel H P, et al. OP- TICS: Ordering Points to Identify the Clustering Structure[C]. The 1999 ACM SIGMOD Interna- tional Conference on Management of Data, Philadel- phia, USA, 1999.
  • 10Estivill-Castro V, Lee I. Multi-level Clustering and Its Visualization for Exploratory Spatial Analysis [J]. GeoInformatiea, 2002, 6(2): 123-152.

引证文献8

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部