期刊文献+

基于石墨烯的碳糊电极对多巴胺的测定 被引量:3

ELECTROCHEMICAL DETECTION OF DOPAMINE ON GRAPHENE PAST ELECTRODE
在线阅读 下载PDF
导出
摘要 用石墨烯制备碳糊电极,考察了该电极在K2Fe(CN)6溶液中的电化学性能,结果表明石墨烯对K2Fe(CN)6在GPE电极表面上的电子转移起到了明显的促进作用.用差示脉冲伏安法研究了多巴胺(DA)在该电极上的电化学行为,在磷酸盐缓冲溶液中(pH=7)多巴胺在该电极上呈现明显氧化峰,氧化峰电位随着pH值的增加而负移,在抗坏血酸存在下多巴胺氧化峰峰高与其浓度在3-50μmol/L范围内呈良好的线性关系,检出限为0.8μmol/L.此外,实验结果还表明,该电极具有良好的重现性和稳定性.将该电极用于实际样品中多巴胺的检测,结果令人满意. Carbon past electrode base on graphene(GPE) was fabricated.The electrochemical behavior of K2Fe(CN)6 on GPE was investigated by cyclic voltammetry.The result indicated that graphene promoted the electron transfer between the interface of analyte and electrode.GPE showed an excellent electrocatalytic effect on the oxidation of dopamine(DA).The electrochemical behavior of dopamine was studied on GPE by differential pulse voltammetry(DPV).DPV peak potential of DA decreased linearly with the increase of pH.The capacity of GPE for selective detection of DA was confirmed in a sufficient amount of ascorbic acid(1 mmol/L).The observed linear range for the determination of dopamine was from 3 μmol/L to 50 μmol/L,and the detection limit was estimated to be 0.8 μmol/L.Furthermore,GPE also exhibited good repeatability and stability.GPE was applied to injection sample analysis,and the results were in good agreement with the standard values.
出处 《陕西科技大学学报(自然科学版)》 2010年第5期37-40,共4页 Journal of Shaanxi University of Science & Technology
关键词 石墨烯 差示脉冲伏安法 多巴胺 抗坏血酸 graphene differential pulse voltammetry dopamine ascorbic acid
  • 相关文献

参考文献17

  • 1Li M. , Gao F. , Yang P. , et al. Conveniently assembling dithiocarbamate and gold nanoparticles onto the gold electrode: a new type of electrochemical sensors for biomolecule detection[J]. Surface Science, 2008, 602: 151-155.
  • 2Atta N. F. , El-Kady M. F.. Novel poly(3-methylthiophene)/Pd, Pt nanoparticle sensor: Synthesis, characterization and its application to the simultaneous analysis of dopamine and ascorbic acid in biological fluids[J]. Sensors and Actuators B, 2010, 145: 299-310.
  • 3Atta N. F. , El-Kady M. F. , Galal A.. Simultaneous determination of catecholamines, uric acid and ascorbic acid at physiological levels using poly(N-methylpyrrole)/Pd-nanoelusters sensor[J]. Analytical Biochemistry, 2010, 400: 78-88.
  • 4Zhu S. , Li H. , Niu W. , et al. Simultaneous electrochemical determination of uric acid, dopamine, and ascorbic acid at singlewalled carbon nanohorn modified glassy carbon electrode[J]. Biosensors and Bioelectronics,2009, 25: 940-943.
  • 5Alwarappan S. , Liu G. , Li C. -Z.. Simultaneous detection of dopamine, ascorbic acid, and uric acid at electrochemically pretreated carbon nanotube biosensors[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2010, 6: 52-57.
  • 6Habibia B. , Pournaghi-Azarb M. H.. Simultaneous determination of ascorbic acid, dopamine and uric acid by use of a MWCNT modified carbon-ceramic electrode and differential pulse voltammetry[J]. Electrochimiea Acta, 2010, 55:5 492-5 498.
  • 7Adekunlea A. S. , Agboolab B. O. , Pillay J. , et al. Electrocatalytic detection of dopamine at single-walled carbon nanotubes-iron (Ⅲ) oxide nanoparticles platform[J]. Sensors and Actuators B, 2010, 148: 93-102.
  • 8Yang W. , Ratinac K. R. , Ringer S. P. , et al. Carbon nanomaterials in biosensors: should you use nanotubes or graphene[J]. Angewandte Chemie International Edition , 2010, 49:2 114-2 138.
  • 9Kim Y. -R. , Bong S. , Kang Y. -J. , et al. Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes[J]. Biosensors and Bioelectronics, 2010, 25:2 366-2 369.
  • 10Zhou M. , Zhai Y. , Dong S.. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide[J]. Analytical Chemistry, 2009, 81:5 603-5 613.

二级参考文献12

  • 1梁克中,袁若,柴雅琴,张英,石银涛.聚精氨酸修饰玻碳电极上多巴胺的电化学特性及其检测[J].化学研究与应用,2006,18(6):659-662. 被引量:8
  • 2马伟,孙登明.聚L-精氨酸修饰电极存在下同时测定多巴胺和肾上腺素[J].分析化学,2007,35(1):66-70. 被引量:22
  • 3MaYong-Jun(马永钧) FuZhou-Zhou(付周周) RenXiao-Na(任小娜) SongQing-Yun(宋青云) ZhouXiu-Ying(周秀英).分析化学,2008,36(5):241-244.
  • 4WuHui-Huang(吴辉煌),YiLiang-Dong(蚁良东),ZhouShao-Min(周绍民).化学学报,1990,48(1):33-37.
  • 5Persson B, Gorton L. J. Electroanal. Chem. , 1990, 292( 1 ) : 115 - 138.
  • 6Chen Y, Tan T C. Talanta, 1995, 42(8) : 1181 -1188.
  • 7Maleki N, Safavi S, Tajabadi F. Anal. Chem. , 2006, 78 ( 11 ) : 3820 - 3826.
  • 8Huang P F, Wang L, Bai J Y, Wang H J, Zhao Y Q, Dan S D. MicrochimActa, 2007, 157(1) : 41 -47.
  • 9Karyakin A A, Ka-akin E E, Wolfgang S, Schmidt H L, Varfolomeyev S D. Electroanalysis, 1994, 6(10) : 821 -829.
  • 10Yao H, Sun Y, Lin X, Tang Y, Huang L. Electrochim. Acta, 2007, 52(20) : 6165 -6171.

共引文献2

同被引文献27

  • 1张洋,于利利,杨亚云,贾能勤.基于铜-石墨烯纳米复合膜修饰电极的无酶葡萄糖传感器(英文)[J].上海师范大学学报(自然科学版),2013,42(1):37-43. 被引量:2
  • 2孙婕,陈捷,庄云龙.智能分子印迹水凝胶[J].化学传感器,2005,25(3):1-6. 被引量:2
  • 3伦立民,车琳杰,李世伟.高效液相色谱法快速检测单胺类神经递质及其代谢产物(英文)[J].中国临床康复,2006,10(22):180-182. 被引量:10
  • 4NJAGI J, CHERNOV M M, LEITER J C, et al. Amperometric detection of dopamine in vivo with an enzyme based carbon fiber microbiosensor [ J ]. Anal Chem,2010,82 (3) :989 - 996.
  • 5DICKEY F H. The preparation of specific adsorbents[ J]. Proc Natl Acad Sci, 1949,35 (5) :227 - 229.
  • 6WULFF G, SARCHAN A, ZABROCKI K. Enzyme-analogue built polymers and their use for the resolution of racemates [ J ]. Tetrahedron Lett, 1973,44:4329 - 433.
  • 7YIN H S, ZHOU Y L, AI S Y, et al. Electrochemical behavior of bisphenol A at glassy carbon electrode modified with gold nanoparticles, silk fibroin, and PAMAM dendrimers[ J ]. Microchim Acta,2010,170(1/2) :99 - 105.
  • 8GUO H L, LIU D Y, YU X D, et al. Direct electrochemistry and electrocatalysis of hemoglobin on nanostructured gold colloid-silk fibroin modified glassy carbon electrode [ J ]. Sens Actuators B, 2009,139 (2) :598 - 603.
  • 9ATTA N F, ABDEL-MAGEED A M. Smart electrochemical sensor for some neurotransmitters using imprinted sol-gel films [J]. Talanta,2009,80(2) :511 -518.
  • 10邢亚东.血清中多巴胺的荧光分光光度测定法[J].工业卫生与职业病,2008,34(2):106-107. 被引量:3

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部