期刊文献+

广义多目标博弈的Hadamard良定性研究

The Well-Posedness of Generalized Multi-Objective Games
在线阅读 下载PDF
导出
摘要 定义了广义多目标博弈的Hadamard良定性,并研究了广义Hadamard良定与Hadamard良定的一个关系. This paper first defines the Hadamard well-posedness for generalized multi-objective games,and then studies the relationship between Hadamard well-posedness of generalized multi-objective games and Hadamard well-posedness of multi-objective games by the method of nonlinear analysis.
机构地区 贵州大学数学系
出处 《云南民族大学学报(自然科学版)》 CAS 2010年第6期444-447,共4页 Journal of Yunnan Minzu University:Natural Sciences Edition
基金 贵州大学研究生理工创新基金(2010040)
关键词 广义多目标博弈 Hadamard良定性 上半连续 稳定性 generalized multi-objective game well-posedness upper semi-continuous stability
  • 相关文献

参考文献11

  • 1阎爱玲,向淑文.向量对策理想-Nash平衡点的存在性[J].应用数学学报,2007,30(2):256-262. 被引量:2
  • 2林志,俞建.ON WELL-POSEDNESS OF THE MULTIOBJECTIVE GENERALIZED GAME[J].Applied Mathematics(A Journal of Chinese Universities),2004,19(3):327-334. 被引量:5
  • 3杨辉,俞建.向量拟平衡问题的本质解及解集的本质连通区[J].系统科学与数学,2004,24(1):74-84. 被引量:19
  • 4Jacqueline Morgan.Approximations and Well-Posedness in Multicriteria Games[J]. Annals of Operations Research . 2005 (1)
  • 5Hui Yang,Jian Yu.Unified Approaches to Well-Posedness with Some Applications[J]. Journal of Global Optimization . 2005 (3)
  • 6S. Y. Wang.Existence of a pareto equilibrium[J]. Journal of Optimization Theory and Applications . 1993 (2)
  • 7YU Jian,YANG Hui,YU Chao.Well-posed Ky Fan s point,quasi-variational inequality and Nash equilibrium problems. Nonlinear Analysis . 2007
  • 8YU C,YU J.On structural stability and robustness to bounded rationality. Nonlinear Analysis . 2006
  • 9Yang H,Yu J.Essential component of the set of weakly Pareto-Nash equilibrium points. Journal of Applied Mathematics . 2002
  • 10Yu Jiao,Yuan Xian_zhi.The study of pareto equilibria for multiobjective games by fixed point and Ky Fan minimax inequality methods. Computers and Mathematics With Applications . 1998

二级参考文献40

  • 1Patrone,F., Well-posedness for Nash equilibria and related topics, In:R.Lucchetti and J.P.Revalski, eds., Recent Developments in Well-posed Variational Problems, Dordrecht:Kluwer Academic Publishers,1995,211-229.
  • 2Margiocco,M., Patrone, F., Pusillo Chicco L., A new approach to Tikhonov well-posedness for Nash equilibria, Optimization,1997,40:385-400.
  • 3Pusillo Chicco L., Approximate solutions and Tikhonov well-posedness for Nash equilibria, In:F. Giannessi, A. Maugeri and P.M. Pardalos eds., Nonsmooth Optimization and Variational Inequality Models,Dordrecht:Kluwer Academic Publishers,2001,221-246.
  • 4Margiocco, M., Patrone, F., Pusillo L., On the Tikhonov well-posedness of concave games and Cournot oligopoly games, Journal of Optimization Theory and Applications, 2002,112(2):361-379.
  • 5oban,M.M., Kenderov, P.S., Revalski, J.P., Generic well-posedness of optimization problems in topological spaces, Mathematika, 1989,36:301-324.
  • 6Dontchev, A.L., Zolezzi,T., Well-posed Optimization Problems, Berlin: Springer-Verlag,1993.
  • 7Kenderov, P.S., Revalski,J.P., Generic Well-posedness of optimization problems and the Banach-Mazur game, In:R.Lucchetti and J.P.Revalski,eds., Recent Developments in Well-posed Variational Problems,Dordrecht:Kluwer Academic Publishers,1995,117-136.
  • 8Revalski, J.P., Various aspects of well-posedness of optimization problems, In:R.Lucchetti and J.P.Revalski,eds., Recent Developments in Well-posed Variational Problems, Dordrecht:Kluwer Academic Publishers,1995,229-256.
  • 9Zolezzi,Z., Well-posedness criteria in optimization with application to the calculus of variations, Nonlinear Analysis:Theory, Method, and Applications,1995,25:437-453.
  • 10Zolezzi,Z., Extended well-posedness of optimization problem, Journal of Optimization Theory and Applications,1996,91:257-266.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部