期刊文献+

自适应约束模糊C均值聚类算法 被引量:2

Adaptive Constrained FCM Clustering Algorithm
原文传递
导出
摘要 针对经典C均值聚类算法和模糊C均值聚类算法所存在的对初始聚类中心过分依赖以及需要预先知道实际聚类数目的问题,基于模糊C均值聚类算法提出了一种新算法:自适应约束模糊C均值(ACFCM)聚类算法,它在模糊C均值聚类算法的基础上,给目标函数加入了一个惩罚项,使得上述问题得以解决。并通过仿真实验证实了新算法的可行性和有效性。 There are two issues in the application of FCM clustering algorithm: one is that the FCM algorithm is too sensitive to the initial cluster centers,and the other is that the number of the clusters C needs to be determined in advance as an input to the algorithm.Based on this,a novel algorithm of FCM is proposed in this paper:Adaptive Constrained FCM clustering algorithm,based on the FCM,a penalty term is added into the objective function and the above-mentioned issues can be resolved.The simulation demonstrates the feasibility and validity of the proposed method.
出处 《模糊系统与数学》 CSCD 北大核心 2010年第5期126-130,共5页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(10371106 10471114 61070234 61071167) 江苏省高校自然科学基金资助项目(04KJB110097 08KJB520003) 南京邮电大学攀登计划项目(NY207064)
关键词 聚类分析 模糊 C均值 约束 自适应 Cluster Analysis Fuzzy c-means Constrained
  • 相关文献

参考文献7

  • 1彭秋生,魏文红.基于核方法的并行模糊聚类算法[J].计算机工程与设计,2008,29(8):1881-1883. 被引量:8
  • 2孙晓霞,刘晓霞,谢倩茹.模糊C-均值(FCM)聚类算法的实现[J].计算机应用与软件,2008,25(3):48-50. 被引量:34
  • 3Bezdek J C.A convergence theorem for the fuzzy ISODATA clustering algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1980
  • 4Han J,Kambr M.Data Mining : Concepts and Techniques. . 2001
  • 5Mark Junjie Li,Michael K. Ng,Yiu-ming Cheung,Joshua Zhexue Huang.Agglomerative Fuzzy K-means Clustering Algorithm with Selection of Number of Clusters. IEEE Transactions on Knowledge and Data Engineering . 2008
  • 6Miyamoto S,Mukaidono M.Fuzzy c-means as a regularization and maximum entropy approach. Proc of the 7th International Fuzzy Systems Association World Congress . 1997
  • 7Ruspini EH.A new approach to clustering. Information and Control . 1969

二级参考文献13

  • 1钮永莉,陈水利.模糊C均值算法的改进[J].模糊系统与数学,2004,18(z1):304-308. 被引量:12
  • 2宫改云,高新波,伍忠东.FCM聚类算法中模糊加权指数m的优选方法[J].模糊系统与数学,2005,19(1):143-148. 被引量:81
  • 3王连亮,陈怀新.基于改进的模糊C-均值的分级递减聚类算法[J].系统工程与电子技术,2005,27(7):1304-1306. 被引量:2
  • 4谷淑化,吕维先.基于消息传递的并行聚类算法[J].现代计算机,2006,12(1):82-84. 被引量:3
  • 5Carl G Looney. A Fuzzy Clustering and Fuzzy Merging Algorithm. Computer Science Department/171, University of Nevada, Redo,NV89557. 1999.
  • 6WBCD dataset, http://www. stat. yale. edu/- pollard/230. spring03 /WBC/.
  • 7Wang Xizhao, Wang Yadong, Wang Lijuan. Improving fuzzy c-means clustering based on feature-weight learning. Pattern Recognition Letters 25, 2004:1123-1132.
  • 8Wu Zhong-dong,Xie Wei-xin,Yu Jian-ping.Fuzzy c-means clustering algorithm based on kernel method[J].Proceeding of the Fifth ICCIMA,2003.
  • 9Michael J Quinn.并行程序设计C、MPI与OpenMP(C语言版)[M].北京:清华大学出版社,2004:95-96.
  • 10Ananth Grama,Anshul Gupta,George Karypis,et al.并行计算导论[M].张武,毛国勇,程海英,等译.2版.北京:机械工业出版社,2005:86-88.

共引文献39

同被引文献13

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部