期刊文献+

结构化文档检索模型的改进研究

Research on Improvement of Structured Document Retrieval Model
原文传递
导出
摘要 针对已有的基于贝叶斯网络的结构化文档检索模型存在的偏好小结构单元的问题,提出了一种改进的检索模型推理算法,算法考虑了结构单元对查询术语的覆盖程度,避免了在推理过程中只使用相关概率排序带来的问题。实验表明检索模型应用该推理算法能有效提高结构化文档的检索性能。 For the existing structured document retrieval model based on Bayesian network fa-vors small structural units,this paper presents an improved inference algorithm,which takes in-to account the level of the structural units covered by the terms and avoids the shortcoming of ranking structural units using only the probabilities of relevance in inference.Experiments show that the inference algorithm can effectively improve the performance of the structured document retrieval.
出处 《情报科学》 CSSCI 北大核心 2010年第11期1706-1709,共4页 Information Science
基金 河北理工大学科学研究基金项目(Z0801)
关键词 结构化文档 贝叶斯网络 信息检索 structured document bayesian network information retrieval
  • 相关文献

参考文献8

  • 1C. Fabio, L. M. de Campos, J. M. Fernandez-Luna, et al. A multi-layered Bayesian network model for structured document retrieval [J]. Lecture Notes in Computer Science, 2003, (2711): 74-86.
  • 2X. L. Wang, J. R. Wen, J. F. Luan, et al. A method to query document database by content and structure [J]. Journal of Software, 2003,14(5): 976-983.
  • 3L. M. de Campos, J. M. Femandez-Luna, J. F. Huete. Bayesian networks and information retrieval: an introduction to the special issue [J]. Information Processing and Management,2004, (40):727-733.
  • 4L.M. de Campos, J.M. Fem?andez-Luna, and J.F. Huete. The BNR model: foundations and performance of a Bayesian network-based retrieval model [J]. International Journal of Approximate Reasoning, 2003,(34): 265-2851.
  • 5赵爽,徐建民.基于贝叶斯网络的结构化文档检索模型[J].计算机工程与应用,2007,43(21):180-183. 被引量:1
  • 6L. M. de Campos, J. M. Femandez-Luna, J. F. Huete. Clustering terms in the Bayesian network retrieval model: a new approach with two term-layers [J]. Applied Soft Computing, 2004, (4):149-158.
  • 7L. M. de Campos, J. M. Fernandez-Luna, J. F. Huete. Using context information in structured document retrieval: an approach based on influence diagrams [J]. Information Processing and Management, 2004, (40): 829-847.
  • 8J. M. Xu, S. Zhao, Z. P. Liu, et al. Using term relationships in a structured document retrieval model based on influence diagrams [J].Lecture?Notes?on?Artificial?Intelligences, 2006, (3930): 711-720.

二级参考文献7

  • 1Crestani F,de Campos L M,Huete J F,et al.A multi-layered Bayesian network model for structured document retrieval[J].Lacture Notes in Computer Science,2003,2711:74-86.
  • 2de Campos L M,Fern'andez-Luna J M,Huete J F.Bayesian networks and information retrieval:an introduction to the special issue[J].Information Processing and Management,2004,40:727-733.
  • 3李俭川.贝叶斯网络故障诊断与维修决策方法及应用研究[M].长沙:国防科学技术大学,2002.
  • 4de Campos L M,Fern'andez-Luna J M,Huete J F.Clustering terms in the Bayesian network retrieval model:a new approach with two term-layers[J].Applied Soft Computing,2004(4):149-158.
  • 5de Campos L M,Fern'andez-Luna J M,Huete J F.The BNR model:foundations and performance of a Bayesian network-based retrieval model[J].International Journal of Approximate Reasoning,2003,34:265-285.
  • 6郑毅,吴斌,史忠植.基于概念空间的文本检索系统[J].计算机工程与应用,2002,38(12):67-69. 被引量:18
  • 7朱晓华.基于概念空间方法的信息检索技术研究[J].大学图书馆学报,2003,21(2):47-53. 被引量:20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部