期刊文献+

基于滚动时间窗口支持向量机的财务困境预测动态建模 被引量:15

Dynamic Financial Distress Prediction Modeling Based on Rolling Time Window Support Vector Machine
在线阅读 下载PDF
导出
摘要 该文从财务困境概念漂移的全新视角,提出了基于滚动时间窗口支持向量机(support vector machine,SVM)的财务困境预测动态建模新方法。设计了面向概念漂移进行财务困境预测动态建模的思路框架,分为宽度固定的滚动时间窗口SVM和宽度可变的滚动时间窗口SVM分别展开算法设计。以中国上市公司为对象,通过模拟时间推移过程,对2000至2008期间被ST的上市公司及其配对公司共692个样本展开实证研究。结果表明:基于滚动时间窗口SVM的财务困境预测动态建模方法能够有效地适应财务困境的概念漂移现象,对未来企业财务困境的预测效果明显优于静态SVM模型。通过比较分析,认为适应性可变时间窗口SVM动态建模方法具有较好的应用推广性。 From the new view of financial distress concept drift,this proposes a new method for dynamic financial distress prediction modeling based on rolling time window support vector machine(SVM).The framework of dynamic financial distress prediction modeling for handing concept drift is designed.The algorithms are designed respectively for two types of rolling time window SVM: fixed window size and alterable window size.With totally 692 samples from Chinese listed companies,which include ST companies from 2000 to 2008 and their paired non-ST companies,the empirical study is carried out by simulating the process of time passage.The results indicate that the proposed dynamic modeling methods based on rolling time window SVM can effectively adapt to the concept drift of financial distress.They significantly outperform the static SVM models in predicting future financial distress.By comparison,the rolling time window SVM with adaptable window size has better practicability.
出处 《管理工程学报》 CSSCI 北大核心 2010年第4期174-180,92,共8页 Journal of Industrial Engineering and Engineering Management
基金 国家自然科学基金项目(70801054) 浙江省自然科学基金项目(Y6090392)
关键词 财务困境预测 概念漂移 滚动时间窗口 支持向量机 financial distress prediction concept drift rolling time window support vector machine
  • 相关文献

参考文献10

二级参考文献77

  • 1李晓峰,徐玖平.企业财务危机预警Rough-ANN模型的建立及其应用[J].系统工程理论与实践,2004,24(10):8-14. 被引量:41
  • 2杨淑娥,黄礼.基于BP神经网络的上市公司财务预警模型[J].系统工程理论与实践,2005,25(1):12-18. 被引量:206
  • 3谢纪刚,裘正定,韩彦俊,莫莉.上市公司财务困境预测模型比较研究[J].系统工程理论与实践,2005,25(9):29-35. 被引量:14
  • 4Altman E I. Financial ratios, discnminant analysis and the prediction of corporate bankruptcy [J]. The Journal of Finance, 1968, (23) : 589 - 609.
  • 5Beaver W H. Financial ratios as predictors of failure,empirical research in accounting: Selected studies[J] .Journal of Accounting Research, 1966:71 - 111.
  • 6Martin D. Early warning of bank failure: A logit regression approach[J]. Journal of Banking Finance, 1977, (1) :249 - 216.
  • 7Ohlson J A. Financial ratios and the probabilistic prediction of bankruptey [J]. Journal of Accounting Research, 1980, (18) : 109 - 131.
  • 8Tam K,Kiang M. Predicting bank failures: A mural network approach[J] .Applied Artificial InteUigence, 1992, (8) :927- 947.
  • 9Wilson R L, Sharda R. Bankruptcy prediction using neural networks[J]. Decision Support Systems, 1994, (11):545- 557.
  • 10Healy D J. Multivariate CUSUM procedure[J]. Technometrics, 1987,29:409 - 412.

共引文献181

同被引文献271

引证文献15

二级引证文献192

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部